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SUMMARY

A numerical study of non-reactive and reactive

axisymmetric combustor flows with and without swirl is

presented. Closure of the Reynolds equations is achieved by

three different levels of models: k-c, algebraic stress and

Reynolds stress closure. Performance of two locally non-

equilibrium and one equilibrium algebraic stress models is

analyzed assuming four different pressure-strain models. A

comparison is also made of the performance of a high and a

low Reynolds number model for combustor flow calculations

using Reynolds stress closures. Effects of diffusion and

pressure-strain models on these closures are also

investigated. Two different models for the scalar transport

are presented. One employes the second-moment closure which

solves the transport equations for the scalar fluxes, while

the other solves the algebraic equations for the scalar

fluxes. In addition, two cases of non-premixed and one case

of premixed combustion are considered. Fast- and finite-rate

chemistry models are applied to non-premixed combustion.

Both models show promise for application in gas turbine

combustors. However, finite rate chemistry models, which are

more realistic, need to be further examined to establish a

suitable coupling of the heat release effects on the

turbulence field and the rate constants.

xii



CHAPTER 1

INTRODUCTION

i.i BACKGROUND

The calculation of turbulent combusting flows has

received considerable attention in recent years. This is due

to different reasons. Some of these are: demands for higher

efficiency combustors, higher cost of measurement

instruments, rapid growth of computer technology, limitation

of fossil fuel resources, and a better understanding of

pollutant formations which jeopardize the ecology in

industrial societies. As a result, an increased interest in

combustion modelling has been generated by researchers in

this area.

At first, attention is only given to the handling of

the complexities of real chemical reactions, which involve

scores of individual species (Lavoie, et ai.,1970). In

reality, fifty to one hundred elementary reactions,

involving ten to fifty chemical species, are required for a

complete description of the kinetic process. Typical

examples are concerned with the accurate calculation of the

equilibrium composition of the gases in a rocket nozzle,

followed by the kinetically-influenced variation of the

composition of the gases as they flow through the nozzle.



Later, two- and three-dimensional variations in space and

variations in time are taken into account (Butler and

O'Rouke, 1977; Griffin et al., 1978), and the development of

"turbulence models" permits realistic representation of the

flow patterns and chemical reactions.

In order to construct a comprehensive combustion model,

the problem may be broadly grouped into three categories:

numerical methods, turbulence models, and chemical kinetics.

There are some serious numerical obstacles involved in a

comprehensive combustion model. Time scales associated with

molecular transport and chemical reactions are vastly

different, and there are sharp gradients in the temperature

and density fields. Simulation of such a process would

involve a set of partial differential equations that include

mass, momentum, energy and species conservation. This set of

equations describing the combustion flow field are coupled

and generally they cannot be easily solved by conventional

procedures because of extremely disparate physical scales

introduced by steep gradients involved in the reaction

processes. For example, in the work done by Dwyer and

Sanders (1977), a numerical technique known as operator

splitting was used to compensate for the vastly different

time scales associated with molecular transport, chemical

transport and unsteady wave propagation. The fluid dynamics

portion of the model problem was solved using explicit

finite difference scheme, while the split reaction terms



were solved by an ordinary differential equation technique.

Otey (1978) has presented a review of different numerical

methods. His work retained the essential features of

chemical flows and allowed insight into the numerical

difficulties involved in the solution of such a complex

system.

However, among the most important questions in current

combustion research are those regarding the role of

interaction between the fluid mechanics and the chemical

reactions (Smoot and Hili,1983). Chemical reactions take

place in the molecular level. On the other hand, turbulent

motion plays an important role in the mixing of the reacting

species. Local turbulence controls the time and frequency

that each of the reactants and products are mixed together,

thus allowing reaction to proceed. In turn, the local

instantaneous reaction processes themselves, often

associated with local heat release or absorption, density

and volume changes,etc, can impact the local turbulent fluid

mechanics.

In practice, the fluid mechanics and chemical kinetics

are so complex that various modelling assumptions are

required to render the solution of the conservation

equations possible. These assumptions which combine physical

reality with ease of formulation are concerned with the

turbulent nature of the flow, the flame, the combustion

characteristics, and the radiative heat transfer from the



products of combustions. Improper models result in erroneous

prediction of combustion efficiency, temperature

distribution in the combustion system and pollutant

formations.

Numerous turbulence models have successfully been

devised for constant properties flows (Launder et ai.,1975;

Lumley,1975a; Reynolds,1976). These provide the basis for

extension to flows with variable properties and combustion.

However, one of the main problem in devising physically

valid models for reactive flows lies in the characterization

of the time-mean net rate of formation or destruction of the

molecular species due to chemical reactions (Pratt,1979

;Bilger,1980). Although the kinetic mechanisms are not

always known and kinetic rate constants are difficult to

identify, the major problem lies not in these areas but in

obtaining the proper time-mean rate of formation or

destruction of molecular species due to the presence of

turbulence (Borghi,1974). Analytical expressions relating

the instantaneous reaction rates to associated flow

quantities are always highly non-linear functions of the

temperature and species concentrations, and thus the

knowledge of the mean values of these latter quantities is

insufficient to allow the evaluation of the mean formation

rates (Pratt,1979). In order to express the mean formation

rate in a correct manner, it is convenient to use the

technique of Reynolds decomposition and express the

4



Arrhenius term in terms of an infinite series involving the

mean values of the scalars and their higher statistics and

cross-correlations. This series is not always convergent

because the correlation terms can be of comparable magnitude

with the mean quantities (Borghi,1974). Depending on the

type of reactions considered and on the chemical species

involved, Borghi (1974) estimated that at least seven terms,

involving third and lower order moments of the scalars, in

the expansion have to be considered. For any realistic

combustion scheme, many equations of this type are present.

Therefore, it is clear that closure of turbulent reacting

flow is a formidable problem. This problem was recognized by

various researchers and different alternate paths have been

suggested. A review of the state of the art of different

combustion models for turbulent diffusion flames has been

given by Bilger (1976).

The effects of these chemistry-turbulence interactions

are quite different for different types of chemical

reactions. To help identify these effects, it is convenient

to identify two hypothetical time scales: the reaction time

scale and the turbulent time scale. The reaction time scale

is defined as a typical time for the reacting species of

interest to react completely to its equilibrium value. The

turbulence time scale is chosen to be a typical fine-scale

mixing time for scale reduction by turbulent breakup of

large eddies. This time scale must be adequate for molecular



interaction to take place (micromixing). The turbulence time

scale then is the time required for mixing to proceed to the

molecular level before reaction can occur. The reaction time

scale is the time required for these reacting species, once

contacted, to react completely to form their products.

Approaches for incorporating chemical reactions in turbulent

systems can be characterized by examining the relationship

between these two time scales.

If the reaction time scale, tr, is much greater than

the turbulent time scale, tt, then the reactions are very

slow compared to changes in the local turbulence. In this

case, if the fluctuations of any variable are very small,

the chemistry is unaware of the presence of the turbulent

fluid mechanics, and the effect of the fluctuations on the

reaction rate can be ignored. However, the mean reaction

rate is highly sensitive to temperature fluctuations. Thus,

even though reaction rates are slow but significant

temperature fluctuations exist, still the mean reaction rate

should account for turbulence effects. Therefore, only in

the very special case is the mean reaction rate equal to the

reaction rate calculated from the mean variables. Although

this approximation has been used by many researchers, it has

been shown to be valid only in a very limited number of

case_. When reaction rates are not suffeciently slow

compared to the local turbulence, the use of this

approximation produces appreciable error (Pratt, 1979).

6



When the reaction time scale is of the same order of

magnitude as the turbulent time scale, both the chemical

kinetics and the turbulent fluctuations must be accounted

for. It is this area that has been identified by combustion

researchers as the area that has the most need of specific

research advances (Smoot and Hill, 1983). Recently, Bilger

(1978) reported an important experimental observation

relating to chemistry/turbulence interaction in a diffusion

flames. Over a broad region of a given non-equilibrium,

laminar, hydrocarbon diffusion flame, the molecular species

composition was only a function of the equivalence ratio,

even though the products were not in thermodynamic

equilibrium. He concluded that the species reaction rate

seems to be only a function of the mixture fraction in these

flames. This observation holds great significance for the

interactions between kinetically limited chemistry and the

turbulent flow field. If the expeimental data base could be

extended to turbulent flames with similar relationships

between local instantaneous chemical composition and the

local instantaneous conserved scalar, then statistical

techniques for calculating mean composition could be

extended to non-equilibrium combustion (Bilger, 1980).

However, reactions associated with heat release in the

high temperature oxidation of hydrocarbon fuels have time

scales very short compared to the time scale of the

turbulent micromixing process (Libby and Williams,1980). In

7



this case, the reactions occur quickly once the reacting

species are mixed together. The fast chemistry assumption

can then be applied. Unfortunately this assumption can be

applied only to situatioins where the fuel and oxidant enter

in separate streams. In this type of turbulent reacting

flows, the assumption can be made that the micromixing

process is rate limiting and not the chemical kinetic

process. Thus, as far as the overall flame is concerned, the

chemistry is fast enough to be considered in local

instantaneous equilibrium. Therefore, fuel and oxidant

cannot both exist at the same point. Once the reactants are

mixed through turbulent motions, the reactions proceed to

equilibrium instantaneously. If the assumptions are made

that all species and heat diffuse at the same rate and the

heat loss to the surrounding is negligible compared with the

heat release, then the instantaneous chemical composition

and temperature can be determined in terms of a single

conserved scalar quantity. For these cases, the conventional

conserved scalar or mixture fraction is defined to identify

the degree of "mixedness" at a point. With these

simplifications, the reacting flow problem is reduced to an

equivalent non-reacting mixing problem (Bilger, 1980). A

significant weakness in this approach is that no details

concerning the formation and emission of carbon monoxide,

nitric oxide, and unburnt fuel are available. All these

require consideration of finite rate chemistry. However,



this method is sufficient even when equilibrium cannot be

assumed, but the reaction rates are sufficiently fast that

chemical composition is only a function of the local

equivalance ratio, and thus only a function of the mixture

fraction. Physically, this implies that the reactions

proceed quickly to some condition that approximates the

equilibrium condition (Smith and Smoot, 1981).

The mean density can be evaluated once the scalar

probability density function (PDF) is known. With

appropriate incorporation of the intermittency of pure fuel

or oxidant streams, some effects of turbulence on the

chemical reactions can be accounted for. The approach

adopted involves specifying a two-parameter PDF. The mean

and variance of the conserved scalar which are determined

from solutions of their respective transport equations can

be used to determine the unknowm parameters. Different two-

parameter PDF's have been proposed and tested by a number of

researchers (Spalding,1971 ; Lockwood and Naguib,1975 ;

Rhode,1975). However, evidence in support of the beta-

distribution has been provided by Jones (1977) in his

calculation of diffusion flames.

Despite the rapid advances made in computer technology,

a direct solution of the time-dependent conservation

equations for turbulent flows is not currently practical.

For example, the calculation of the diurnal cycle by

Deardorf (1974) using a sub-grid-scale scheme required a



week's computing time using the whole resources of a CDC

7600 computer. The conventional technique is to solve the

time-averaged equations. In this way, the equations become

identical to the instantaneous form of the equations only in

the time-mean variable, but there are a large number of

extra terms involving the fluctuating components (Borghi,
--r---

1974). Terms such as Puiu j ,Up u i, etc. appear. A constant

density flow simplifies these problems greatly since p =0.

For variable density flow, more often, it is assumed that p'

is not correlated with u i, thus, terms involving pare

neglected and the equations reduce to those for the constant

density flow. However, some measurements cited by Bilger

-c-

(1976) indicate that terms such as Up v can be of the same

order as Puiu j and sometimes greater than the turbulent

momentum flux pu---_. However, there is a way to circumvent

this difficulty' Bilger (1975;1976) points out how Favre

averaging can be applied to deal with this problem. In Favre

averaging, quantities are weighted by the instantaneous

density before averaging. The resulting partial differential

equations are identical in form to the uniform density flow

equations, except Favre-averaged variables replace the

conventional Reynolds-averaged ones (Favre, 1969).

Furthermore, the density remaining in the equation is still

the time mean density.

In the fluid mechanics area, a survey of the mean-

turbulence-field closure models by Mellor and Herring (1973)

lO



gives an excellent discussion of what has been achieved in

the mathematical modelling of turbulence up to 1973.

Spalding (1975) gives a discussion of solved and unsolved

problems in turbulence modelling. He focuses on the k-E

model and enumerates its advantages and shortcomings. It is

the deficiencies in the k-E model which have encouraged

developments in more advanced turbulence modelling.

Different classes of turbulence models have been developed

such as Reynolds stress closures (Hanjalic and

Launder,1972), algebraic stress/scalar flux closures (Mellor

and Yamada,1974 ; Rodi, 1976; Gibson and Launder, 1976),

sub-grid-scale scheme (Deardorff, 1973,1975; Schumann,1975 ;

Kwak et al., 1975), etc. All of these focus on the non-

isotropic nature of the eddy viscosity.

In Reynolds stress closures, the stress components are

no longer related to the local mean strain rates but are

determined from their transport equations (Launder, 1979). A

similar approach is used to determine the turbulent scalar

fluxes. Models employing transport equations for the

individual turbulent stress and flux components simulate the

turbulent processes most realistically and are therefore

potentially better than simpler models. However, they are

not thoroughly tested and computationally more expensive,

and hence at the present state of development not very

suitable for practical applications. However, they are

important as a starting point for deriving algebraic

11



expressions for the turbulent stresses and fluxes

(Rodi,1976; Mellor and Yamada,1974). It seems that such

expressions, together with k and _ equations, are sufficient

for most engineering problems and that there are hardly any

cases where a full transport equation model is needed. They

combine, at least to some extent, the numerical simplicity

of the k-_ model with the generality of the Reynolds stress

closures when it comes to accounting for the effect of body

forces such as buoyancy and rotation. Finally, a completely

different turbulence modelling approach is to solve the

Navier-Stokes equations directly by simulation and modelling

only the sub-grid-scale turbulence. The present computers

are too small and too slow to resolve the small-scale

turbulent motion in a numerical solution. However, the

computer capacity is sufficient to solve the time-dependent

equations for the large scale motions; the small-scale

turbulence that cannot be resolved with the chosen numerical

grid must then be approximated by a model. The small-scale

turbulence is much less problem-dependent than the large

scale turbulence so that the sub-grid-scale turbulence can

be represented by relatively simple models. This approach

appears very promising for solving three-dimensional time-

dependent problems. Kim (1985) used 128x129x128

computational grid points for direct numerical simulation of

turbulent flow in a channel. He used the temperature as a

passive scalar to investigate the interaction of the wall-

12



layer structure with the outer layer. Herring (1979) gives a

short introduction and overview to subgrid modelling and

Love and Leslie (1979) give more details. The greatest

drawback with this approach is the huge amount of computing

time involved. For this reason, they are being looked upon

as methods of improving the modelling approximations of

simpler closures.

In view of the similarity of the density-weighted

averaged equations to those for uniform-density flow, the

idea has emerged that existing uniform density models may be

adapted to non-uniform density turbulent flows simply by

substituting the density-weighted variables for the standard

average variables in a particular model. Bilger (1976, 1977,

1979) advocates this hypothesis of turbulent model

similarity. However, not much work has been done in this

area. Therefore, our present objective is to try to

establish the validity of constant-density models for

variable density flows.

1.2 OBJECTIVES

The main objectives of this research are:

A. To evaluate and identify the most general and efficient

model for turbulent momentum exchange in swirling and non-

swirling combustor flow calculations. The evaluations will

include k-E model, algebraic stress models and full Reynolds

stress models.

13



B. TO provide a review of the existing turbulent scalar flux

models and to evaluate and identify the most general and

efficient scalar flux model for swirling and non-swirling

combustor flows.

C. The validity of these models for variable-density flows

is examined and their applicability is demonstrated by

comparison with measurements.

D. The turbulence models identified above will be applied to

calculate premixed and non-premixed reacting flows using

both fast and finite rate chemistry models. Their validity

will be examined in detail.

E. Finally, the effect of heat release on the turbulent flow

field is examined, and the validity and extent of constant-

density turbulence models for reacting flow calculations is

assessed.

1.3 OUTLINE OF THE REPORT

The remainder of the report consists of five chapters

and the accompanying appendices.

In chapter 2, the problem of calculating turbulent

flows is posed more precisely by introducing and discussing

the density-weighted averaged equations governing the mean-

flow quantities. The appearance of turbulent transport terms

14



in these equations makes apparent the necessity of

introducing turbulence models. The heart of this chapter is

the actual review of models in the sections 2.3 to 2.4; the

models are discussed in order of increasing complexity.

Section 2.5 considers the extension of the turbulence models

to include the low Reynolds number region that is always

found in the immediate vicinity of a smooth wall. Although

this region usually occupies less than 1% of the flow

domain, it is of significant importance because 50% of the

change in mean velocity occurs across it. Section 2.6 turns

the attention to the modelling of combustion processes. It

will discuss the cases

reactants, respectively.

Chapter 3 presents

of non-premixed and premixed

the details of the solution

procedure adopted for the highly coupled and non-linear

governing equations. This chapter briefly discusses

numerical (false) diffusion which may or may not seriously

affect the accuracy of the solution. A scheme is introduced

to reduce this source of error.

In chapter 4, the effects of four different pressure-

strain models on three different algebraic stress closures

(ASM) for swirling and non-swirling turbulent flows are

investigated. The results are compared with the standard k-E

model. Having demonstrated the effect of the pressure-strain

correlation and determined its suitable model, attention is

turned to the performance of the Reynolds stress closure

15



(RSM). A comparison is made of the performance of a high and

a low Reynolds number Reynolds stress closure. Effects of

two different turbulent diffusion models on RSM are also

analysed and the results are compared with the standard k-E

model and some algebraic stress closures. For swirling

flows, comparison of standard k-_ model, ASM and RSM are

made using the diffusion model and pressure-strain model

which are found to perform the best for non-swirling flow

calculations. As for the scalar field calculations, effects

of two pressure-scalar-gradient models on two different

algebraic scalar flux models (AFM) are analysed and the

results are compared with the full Reynolds stress/flux

closure. Finally, comparison of three different ASM and the

k-_ model are made for variable-density swirling flows and

the results are discussed.

Chapter 5 discusses the results of non-premixed and

premixed combustion models. Both fast and finite rate

chemistry models are applied to non-premixed combustion.

However, in contrast to non-premixed flames, premixed flames

require the consideration of finite rate reaction only. In

this case, a two-step reaction process is used and the mean

formation rates are calculated from the Arrhenius reaction

rates and also the eddy break-up model.

Finally, chapter 6 summarises the main conclusions

emerged from this study and put forward some recommendations

for future work.
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CHAPTER2

GOVERNINGEQUATIONSFOR VARIABLE-DENSITY FLOWS

2.1 MEAN EQUATIONS IN FAVRE-AVERAGEDFORM

In this section, the equations which govern the

distribution of the mean flow quantities are presented.

These equations are derived from the conservation laws of

mass, momentum and scalar which can be expressed in

Cartesian tensor notation as:

mass conservation :

_P + aPui
8t ax = o, (2 i)

I

momentum conservation :

0_..a5 i ~ a6 i = _ a_ +_;j
Pa-t + Psi ax--jj ox, ax;

, (2.2)

scalar conservation :

a[ - a_ _ a_ (2.3)
P_t + puj axj Ox i
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where ui is the component of instantaneous velocity in the

x i direction, p is the instantaneous static pressure, _ is

an instantaneous scalar quantity, ]i is the diffusion flux

of scalar 8 in the x i direction, and _ij is the

instantaneous viscous stress tensor.

Turbulent flows contain motions which are much smaller

than the extent of the flow domain. In order to resolve

these motions in a numerical procedure, the mesh size of the

numerical grid would have to be even smaller. Storing the

flow variables at so many grid points is beyond the capacity

of present computers. For this reason, turbulent flow is

normally analysed using statistical methods. Following

Reynolds, the instantaneous quantities are separated into

mean values and their fluctuations. For variable density

flows two types of decomposition can be used; either the

unweighted form conventionally used for constant density

flows or the density-weighted decomposition suggested by

Favre (1969). The unweighted decomposition and averaging of

flow variables are represnted by

where

!

ui = Ui + ui

T+t

1 I ui dtUi = Lim

T --_ OO t

and Ul = 0
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which the density-weighted decomposition and averaging are

defined as:

ui = Ui + ui

where

T+t

i I ~~
U i = Lim _ _i dt

P
T-_ oO t

Since by definition _i_0, it can be shown that _i#O and

pui=-p-_u'i. The averaging time T is long compared with the

largest turbulence time scales, but shorter than the period

over which the average flow quantities may vary. In general,

the averaging process should involve ensemble averaging, but

for stationary flows, time averaging and ensemble averaging

are the same (Lumley, 1970). For high Reynolds number flows,

after noting that density weighting is not to be applied to

either the pressure or density , the Favre-averaged forms of

the equations of continuity and conservation of momentum and

scalar may be written as
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8_a- + 8
at 8_<i(p-U_) = 0 , (2.4)

at + 5-xjGU_U_) =- axe- axj(;u_uj) , (2.5)

_ + a _a --
at _(Tu_e) = -ax(TU_e) . (2.6)

The unweighted averaging technique results in similiar

equations but with two differences. Firstly, the density-

weighted quantities are replaced by unweighted quantities.

-T--w -r-i
Secondly, correlations such as p u and p _ appear in the

equations.

There are some advantages for selecting the Favre

averaged forms of the equations. It provides equations

describing the mean values of those quantities which are

conserved. For example, the component of mean momentum per

unit volume in the xi-direction is _U i and not pU i. In

addition, the equations which arise from the application of

the density-weighted averaging technique are of a much

simpler form and are more easily interpreted than those

obtained from unweighted averaging. For the reasons stated

above, we will concern ourselves only with the density-

weighted averaged forms of the governing conservation

equations from now on.
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As a consequence of the non-linearity of the equations

(2.2) and (2.3), the averaging process used introduces

unknown correlations. As a result, the equations are no

longer closed and closure assumptions are necessary before

solution is possible. The problem of calculating these

correlations can be approached at different levels of

complexity. It is the intention of this chapter to discuss

in detail the appropriate turbulence closures for variable

density flows. These include both turbulent viscosity and

full Reynolds stress models.

2.2 REYNOLDSEQUATIONSIN FAVRE-AVERAGEDFORM

For high Reynolds number turbulent flows, the equations

that govern the transport of the Reynolds-stress tensor may

be concisely expressed in Cartesian tensor form as

a a a
 t(u,uj)+ ;uk axk(U,Uj)=-axk

! !

aD Uj aD
(P uiujuk) - (ui axj + ax_

(a) (b)

aUj + uJ uk a_uui-p(uiu k ax k ax k )

(c)

, auj , au
- (Zki ax k + Tkj axk-1 )

(d)

(2.7)
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Equation (2.7) is obtained by subtracting equation (2.5)

from (2.2), multiplying the result by uj and adding to it

the same equation with subscripts i and j interchanged, then

averaging the resultant equation. It expresses the rate of

change of the Reynolds stresses as the sum of four different

processes: (a) diffusion by the action of velocity

fluctuations, (b) transport by fluctuating velocity-pressure

gradient correlations, (c) generation of Reynolds stresses

through the interaction of stresses with the mean strain

rate, and (d) dissipation of Reynolds stresses through

viscous action. The contraction of this equation, that is

when the equations for the three normal stresses (i=j=I,2,3)

are summed up, yields the turbulent kinetic energy equation.

The density-weighted averaged form of the equation for

the scalar flux, p_8 may be obtained by multiplying the

fluctuating velocity equation by the fluctuating scalar,0;

then adding to it the equation for 8 multiplied by u i and

averaging the result. Neglecting the influence of buoyant

force and viscous diffusion, the result is expressed as:
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_- a -- - a 8 , ,8_
_t(u_e) + p u m a_m(U_e)= -a_ m(_ UiUme + p e 8im) + p _i

(A) (B)

au i ao a_ j , au i
-P(Um_ _Xm + UiUma_m ) - (r'ij _j m aXm )

(C) (D)

(2.8)

The physical interpretion of the terms on the right hand

side of (2.8), from left to right, is: (A) the diffusive

transport due to velocity and pressure fluctuations, (B)

transport due to the fluctuating pressure-scalar-gradient

correlations, (C) the generation of scalar flux due to the

mean gradients of the velocity and scalar fields, and (D)

viscous dissipation.

2.3 MODELLING OF THE REYNOLDS EQUATIONS

2.3.1 MODELLING OF THE u u.-EQUATION
i j

Of the terms on the right-hand side of equation (2.7),

only the production term (c) can be calculated directly in a

flow field where the velocities, Reynolds stresses and

dissipation rate are known. Others, however, need to be

modelled because they either include higher order

correlations (term a) or correlations between turbulence

quatities that are not known. The objective of this section
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is to discuss each of these terms separately and to suggest

approximate models for closure. In order to accomplish this

task we shall make extensive use of models developed for

uniform density flows and assume that the use of density-

weighted averaging will partially account for the influence

of density fluctuations (Jones, 1980).

The viscous dissipation correlation (d) is the least

difficult term to model. This term represents the

destruction of Reynolds stresses through viscous action. At

high Reynolds number, the small scale structure of

turbulence tends to be independent of any orientation

effects introduced by the mean shear. Under these

conditions, the small scale strucure of turbulence is in a

state of local isotropy and the dissipation correlation as

suggested by Kolmogorov (1941) can be expressed as

, au. , _3ui 2 -
_" --J + 'r =

; eij rki 0x k kj 0_ _ &lj p e
(2.9)

where

# E = rkm ax k

24



is the dissipation rate of turbulent kinetic energy per unit

volume. This model introduces another unknown into the

problem; namely E, the turbulent kinetic energy dissipation

rate. Therefore, an equation for the dissipation rate must

be solved in conjunction with the set of Reynolds-stress

equations.

Term (b) is conventionally partition into two parts

! !

ui _xj + uj aD a p, p'uj)8x i = _Xk(6Jk ui + 6ik

au. auj

- p,( ax [+j axi )

(2.10)

where the first term on the right hand side of (2.10) is

conventionaly identified as diffusive transport of ui---uj due

to p' and the second term is usually referred to as the

pressure-strain term. This term is redistributive if the

flow is incompressible, because the trace of this term is

identically zero.

For variable density flows, the conventional

partitioning of (2.10) does not result in a redistributive

term since aui/axi#O. An alternate partition which gives a
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redistributive term has been suggested by Lumley (1975 b).It

can be written as

ui 8@-_-xi+ uj 8D' = 8_R' 8D'ax i (ui axj + uj 8x i

2 aR,

- _ Um 8x m 6ij)

(2.11)

2 aD'

+ _ Um 8x m 6ij

It can be seen that the first term on the right-hand-side of

(2.11) gives a zero trace whether the flow is incompressible

or not. The primary function of this term is to change the

relative levels of the normal stresses, and to redistribute

the turbulence energy in the stress equations.

From a practical point of view, all these arguments are

quite immaterial, since none of the terms can be measured

(Jones 1980). However, from the view point of turbulence

modelling, the difference may be important. Thus if we want

to apply the constant density models (which are

redistributive) for variable density flows the latter

decomposition (2.11) is recommended.

In order to gain further insight into the modelling of

the redistributive term, a Poisson equation for the

fluctuating pressure is derived. This is done by taking the
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divergence of the equation for the fluctuating velocity u i.

The result is expressed as:

2
a_ a2 a_2
8x i -at 2 (pu i + p'ui) -sxiSxj (puiuj -puiu j +puiUj+pujU i)

(2.12)

Equation (2.12) is much more complicated than its constant

density version because aui/sxi#O. According to Jones (1980)

some of the influence of density fluctuations could be

partially accounted for by considering the Favre-averaged

equations rather than the Reynolds-averaged equations.

Besides, since the complete modelling of variable-density

flows is, at present, hindered by a lack of credible data,

therefore, it is more practical to apply constant density

models.

Following Chou (1945) the redistributive part of the

velocity-pressure gradient correlation, Hij , is divided

into two types of terms: one containing fluctuating

quantities alone (Hij,l) and the second due to mean strain

effects, (Hij,2) . Each contribution is ususally modelled

separately. The term Hij,l has long been recognized as the

only mechanism in the stress transport equation (2.7) that

!

could promote a return to isotropy. Rotta s (1951) proposal
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for the modeling of Hij,l has generally been adopted and is

used in most Reynolds-stress equation models:

Hij,l = - Cl p- k(UiUj - 26ij k/3)
(2.13)

where E/k defines a time scale and C 1 is a constant to be

determined from experimental considerations.

A model to represent the interaction of mean strain and

fluctuating velocities (Hij,2) was first devised by Rotta

(1972). In the absence of external forces this can be

written as:

2 au

Hij,2 = -C 2 ; k (Sij - _ 6ij _xm )
(2.14)

where

cfx;+Z:'

Later, Naot et al. (1973) proposed that the effect of mean

strain rate is to promote a similar return to isotropy in

the Reynolds stress production tensor, i.e.

= - - --_ - Pk ) (2 15)Hij, 2 - C2 (Pij 2
3 P uiuj ax m 6ij
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where

- aU. au i ,Pij - - P (UiUk --J + UjUk -- )
ax k ax k

pk_= P_u_
2

Launder, Reece and Rodi (1975) suggested a model which takes

into account effects due to both the symmetric and

antisymmetric parts of the rate of strain tensor. Their

model takes the form

Hij ,2 = -_ (Pij - 2 6i j Pk - 2p ui----_j aa__Uxm)

where

-8 (Dij - 2 6i j Pk - 2_ ui---6j _x ) (2.16)

- 2 aU

-7 P k (Sij - _6ij _Xm )

- auk auk

Dij - P (UiUk axj + UjUk ax i ) '

_ = CZ + 8

11

,8= 8C2 - 2

ii

7 -- 30C2
2

55
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The remaining part of the fluctuating velocity-pressure

gradient correlations is not redistributive and can be

written as

2 aD' _ 2 ' _ + 32 6i j (2.17
6ij Um ax m 3 6ij p ax m 8x m

)

Bilger (1976) has argued that the first term is associated

with noise generation and is small. In constant density

flows and in situations where the Boussinesq approximation

is appropriate this term vanishes. The second term can be

lumped into the diffusive transport terms. Hence, the

diffusive transport of turbulent stresses includes three

mechanism: (I) transport through fluctuating velocities, (2)

transport through pressure fluctuations, and (3) molecular

transport, which is negligible at high Reynolds number.

!

Irwin s (1973) measurements of self preserving wall jets in

an adverse pressure gradient show that the transport due to

pressure fluctuations is negligible compared with that due

to velocity fluctuations. Within these assumptions, the

diffusive transport term reduces to the triple-velocity

correlation only. Daly and Harlow (1970) modelled this term

as
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k-- a

- uiuju k = cs -_ UkUm axm(UiUj)
(2.18)

The left-hand-side of equation (2.18) is tensor-invariant

but the right-hand-side alters under permutation of the

indicies i,j and k. In order to have a model that is

consistent tensorially, Hanjalic and Launder (1972) propose

the following form for this correlation

-uiuju k = C k[ukU m a UiUm a_ ( axm(UiUk) ]s ax(UiUj ) + UjUk) + UjUm _-

(2.19)

This formulation contains the Daly and Harlow modelling as

its first term and possesses the correct tensor properties.

Both (2.18) and (2.19) imply gradient transport of Reynolds

stresses but whereas in (2.18) the diffusivities are the

same for each stress component, the diffusivities evaluated

from (2.19) are different for each stress component.

2.3.2 MODELLING OF THE u _ -EQUATION
.i

The mean field production term (C) in equation (2.8) is

due to the combined action of mean velocity and mean scalar
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gradients, the former tending to increase the scalar

fluctuations and the latter the velocity fluctuations. This

term is exact and does not need to be modeled. At high

Reynolds number, the fine scale motions are assumed to be

isotropic. Since there is no first-order isotropic tensor,

the dissipative term (D) is zero. Consequently, model

approximations have to be proposed for the diffusion term

(A) and for the

correlation term (B).

By neglecting

fluctuating pressure-scalar-gradient

pressure transport, Launder (1976)

proposed the following gradient approximation for term (A):

k (ue)+ uiuk  xk(uoe)] (2.20)-UiUm_ = C s_ _ [UmUk dx k

where the coefficient Cs0 has been taken as 0.ii in

conformity with the value of Cs in equation (2.19).

The most important process requiring approximation is

the pressure-scalar-gradient correlation Hi_. This term is

the counterpart of the pressure-strain term in the Reynolds

stress transport equations. This is the main term to

counteract the production of the scalar flux and thus to

limit its growth. With the aid of the Poisson equation for

the fluctuation pressure, two different mechanisms which

contribute to Hi8 can be identified. One is due to pure
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turbulence interaction, and the other arising from mean

strain effect. Therefore, Hi0 can again be partitioned into

Hie = n ie, 1 + Hie, 2 (2.21)

The most widely used model for the first part is due to

Monin (1965)

-- 6

nie,l = - c 18 p k uie (2.22)

Equation (2.22) is a direct counterpart of Rotta's return to

isotropy approximation (2.13) for the pressure-strain term

Hij,l. Analogous to the pressure-strain model (2.15),

Launder (1975) proposed that the second part should be

proportional to the scalar flux production due to the mean

strain, or

a--U-Ui (2.23 )
Hie,2 = C 28 u_ e ax I

2.3.3 THE DISSIPATION RATE TRANSPORT EQUATION

In anticipation of the fact that the quantity _ is

required in turbulent flow calculations, we need to solve a

transport equation for _. For high-Reynolds-number variable
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density flows, the transport equation for turbulent kinetic

energy dissipation rate is given by Jones (1980)as:

- a_ - ae_ a - k ae -e a_ui
P _t + P Um 8x m 8x (C_ P --UkUmE _x ) - CI Pk uiuj 8xj

- C 2 # _ (2.24)

Additional terms could be added to equation (2.24)

variable density flows. These terms are:

for

_ - 8Up'u i 8D' and --
k F 8x i PEsx'i

However, this introduces more empiricism into the equation

and there are no reliable means to determine the additional

empirical constants. As a result, the additional terms for

(2.24) are commonly neglected.

Equation (2.24) shows that the rate of change of _ is

balanced by the diffusive transport, the generation of

vorticity due to vortex stretching connected with the energy

cascade, and viscous destruction of vorticity.
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2.3.4 THE SCALAR FLUCTUATION TRANSPORTEQUATION

In connection with variable-density flow calculations,

it is necessary to determine the scalar fluctuation

quantities (Spalding, 1971). For high-Reynolds-numbers, the

transport equation for the scalar fluctuation is given by

Jones (1980) as:

(AA) (BB)

B2- 2c0e2;

(cc)

(2.25)

The equation expresses the fact that the level of _-_

following a mean stream-line will change through an

imbalance of the generation rate of the scalar fluctuation

by gradient in e (AA), through diffusive transport produced

by turbulent velocity fluctuations (BB) and the dissipation

of fluctuations due to molecular diffusion in the fine scale

motions (CC). Equation (2.25) is the most straightforward of

all turbulence transport equations; it resembles the

turbulence kinetic energy equation except that pressure

transport is absent from (2.25).
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2.4 DIFFERENT LEVELS OF CLOSUREMODELS

The task of turbulence closure is to determine the

turbulent flux terms in the mean-flow equations so that

these can be substituted into the equations and thus allow

the velocity, temperature and concentration fields to be

solved. Turbulence models may be classified according to

whether the turbulent momentum and heat/mass fluxes are

assumed to be locally determined or whether they are

obtained from their transport equations. The former approach

is known as mean flow closure while the latter is called

Reynolds stress closure.

In mean flow closures, turbulent viscosity relates the

Reynolds stresses to the local strain field by an expression

similar to that for laminar flow. However, the turbulent

viscosity is a function of the properties of the turbulence

and not of the fluid. A wide variety of models are available

in the literature. However, these have only been applied to

particular classes of thin shear flows. Since these models

are not discussed in detail in later sections, it may be

helpful to briefly mention some of the more pertinent work

here. The simplest model that provides information about the

distribution of the eddy viscosity, is the mixing-length

hypothesis, generally attributed to Prandtl (1925). Prandtl,

stimulated by kinetic gas theory, assumed that the eddy

viscosity vt is proportional to a mean fluctuating velocity
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# and a mixing length _. Considering shear layers with only

one significant turbulent stress (u-v) and velocity gradient

(su/ay), he then postulated that # is equal to the mean

velocity gradient times the mixing length. The closure

problem is then reduced to a determination of the mixing

length _. Prandtl found that simple algebraic prescription

leads to fairly good results for simple shear flows.

Recognizing that the level of turbulence at a point in

the flow is determined not just by local events but by

convective and diffusive behavior too, Prandtl (1945)

proposed that the square root of the turbulence kinetic

energy, k should be adopted as the characteistic fluctuating

velocity and that its value should be determined from a

transport equation. The mixing-length _ is typically

described with the aid of empirical information. The general

form of the equation he proposed is still in use today in

models of the "one-equation" type. Two further one-equation

models also deserve mention. Nee and Kovasznay (1969)

devised a transport equation for the turbulent viscosity

itself while Bradshaw et al. (1967) developed a simplified

transport equation for the shear stress. The latter model

was suitable for calculating thin shear flows where the

shear stress did not change sign; it has been extended to

allow reversal in the shear stress across the layer

(Bradshaw et al. , 1974). Unlike boundary-layer flows on a

smooth wall, there are no simple rules that can serve to
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give the length scale in a separated flow. The only way to

obtain a reasonably accurate estimate of the length scale

distribution is to calculate it, like the turbulent kinetic

energy, from a simulated length scale equation.

Two-equation models are the simplest models that are

suitable for complex flows in which the length-scale cannot

be prescribed empirically in an easy way. The various

length-scale equations proposed in the literature have very

similar performance; the _-equation become most popular

because of its relative simplicity. The standard k-_ model

is based on the assumption that the eddy viscosity is the

same for all Reynolds stresses uiu j. However, in certain

flow situations the assumption of an isotropic eddy

viscosity is too crude; for example it does not produce the

turbulence-driven secondary motions in square ducts which

have been observed experimentally (Meroney, 1976). To allow

for the non-isotropic behavior of the eddy viscosity and to

account for the effect of body forces (buoyancy , rotation),

the k-_ model is refined by introducing algebraic stress

model. This model is based on a simplification of the

Reynolds stress equations that allows the equations to be

reduced to algebraic equations for uiff j . Since the

quantities k and _ are present in these equations, their

transport equations also have to be solved.

In the Reynolds stress closure, the stress components

are no longer coupl6d to the local mean strain rates but are
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determined from their transport equations. Models employing

transport equations for the individual turbulent stress and

flux components simulate the turbulent processes more

realistically and are therefore potentially more general

than the simple models.

Combustor flows are very complicated. They contain

different flow regions such as: (i) inviscid core region,

(2) recirculation zone, (3) shear region between regions (I)

and (2), (4) reattachment region, (5) recovery region and

ordinary boundary layer along the wall. Each region has its

particular turbulence characteristics. Therefore, any

proposed model has to be general enough to predict all these

different regions if it is to be successful in combustor

flow calculations. It is not possible to specify empirically

the length-scale distribution in such complex flows. As a

result, attention is given to turbulent transport models in

which at least one turbulent velocity and length-scale is

found from the solution of approximated transport equations.

Only turbulence models of at least this degree of complexity

are suitable for complex combustor flow calculations.

Therefore, the standard k-_ model, algebraic stress model

and Reynolds stress model are the only qualified models for

combustor flow calculations.
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2.4.1 k-E MODEL

The k-_ model developed by Jones and Launder (1972) is

the simplest model which is suitable for recirculating flow

calculations. This model achieves closure by using a

gradient transport model for u_uj, or

2 -- au

- P uiuj = - 3 6iJ (p k + #t _xxm) + #t Sij
(2.26)

The effective (turbulent or eddy) viscosity #t

appearing in (2.26), is defined in terms of a characteristic

length and velocity. If this length is taken as the

turbulence length scale k3/2/_ ,and the velocity is

approximated by k I/2, _t can be expressed as

_ k z

_t = C p -- (2.27)

where C is a constant of proportionality.

The k-_ model is the simplest model that allows the

characteristic length scale of a wide range of complex flow

fields to be determined. It has been applied to the

calculation of various free shear flows (Launder et al.,

1973), recirculating flows (Sindir, 1983a, 1983b), and
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confined reacting flows with and without swirl (Smith and

Smoot, 1981). In direct comparison of the k-_ model

predictions with experimental data, the model is successful

in predicting the basic features of turbulent flows. When

significant streamline curvatures are introduced into the

flow field, the k-E model does not adequately account for

the enhanced turbulence diffusion caused by the extra strain

rates associated with streamline curvature. The standard k-c

model is based on the isotropic eddy viscosity assumption.

However, in the calculation of simple thin shear layers

where only the shear stress, u--v, appears in the equations,

the closure is not influenced by the isotropic assumption.

In other flow situations where such simplifications are not

realized, models based on isotropic turbulent viscosity

often lead to unsatisfactory flow predictions. To allow for

the non-isotropic behavior of the eddy viscosity in such

cases, the k-_ model is often modified by introducing the

algebraic stress model to replace the isotropic eddy

viscosity assumption. The axisymmetric form of the turbulent

flow equations is given in appendix A for the k-E model.

2.4.2 THE ALGEBRAIC STRESS/FLUX MODELS

The algebraic stress model (ASM) is a special case of

the Reynolds stress model. It relates the individual

stresses to mean velocity gradient, turbulent kinetic energy
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and its dissipation rate by way of algebraic expressions.

Algebraic stress models, hereafter denoted by ASM for short,

can be classified into two categories. The first is based on

a local equilibrium assumption for the turbulence field,

whereby the turbulence transport terms are neglected

compared to the local production and dissipation of

turbulence. A second class of ASM is based on the local non-

equilibrium assumption. Approaches of this kind, where the

convection and diffusion transport of turbulent stresses are

approximated, have been developed by Mellor and Yamada

(1974,1982) and Rodi (1976).

The equilibrium ASM, hereafter denoted by ASM/E, is

obtained when the convective and diffusive transport terms

in the Reynolds stress transport equation (2.7) are assumed

to be zero. With this simplification, (2.7) reduces to

2
Pi-'3 - _ 6ij E +n ij -_ 0. (2.28)

With suitable modelling for Hij, (2.28) becomes algebraic in

uiu j and can be solved in terms of k, _ and Sij" Many flows,

in particular thin shear layers, evolve so slowly that

neglecting the convection and diffusion of turbulent

stresses and fluxes can be justified. It should be mentioned

however, that these simplified relations lead to an

inconsistancy in the normal stresses when dissipation is not
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balanced by production, because the resulting normal

stresses do not sum up to 2k as they should.

Mellor and Yamada propose to simplify the Reynolds

transport equations through an order-of-magnitude argument

based on a2= O(aij) 2, where aij is a non-dimensional measure

of anisotropy and is given by

aij = u_ _ _4 (2.29)
2k 3

The order-of-magnitude argument is performed on an equation

for (2aijk) which is obtained by subtracting the product of

6ij/3 and the transport equation for turbulent kinetic

energy from the transport equation for ui---_j. The resultant

equation becomes

2

_(uiu j - _ 6ij k) =

2

_(2aijk) = Pij - _ 6ijPk + Hij

(2.30)

where the differential operator _ is used to denote the

combined convective and diffusive transport operators. Terms

in (2.30) are evaluated in powers of a and terms of order a2

and higher are neglected. The result is

2

Pij - 3 6ij Pk + Hij -_ 0 (2.31)
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Rodi's (1976) approach is to eliminate the transport

terms in the governing equations by assuming

(uiu 5) = (rJ_Lh) (k)
k

(2.32)

This assumption is correct when u_j/k is constant over the

whole flow field. However, its validity for flows with

varying u_uj/k ratios has not been demonstrated. Another

point to note is that u_uj/k is constant only for flows that

are in local or near equilibrium (Mellor and Yamada, 1982).

Nevertheless, this assumption leads to

m

uiuj(P k - it) = k(Pij - _6ij p c + Hij ) (2.33)

which gives a set of algebraic equations for ui--uj after Hij

has been appropriately modeled.

The approaches of Mellor and Yamada, and Rodi are

essentially similiar to the same order a 2. This can be seen

by considering assumption (2.32), which can be written with

the help of (2.29) as

2 2
(uiu j - _ 6ij k) = _ _(k) -_(_6ij k)

k
(2.34)
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Since _(k) = Pk - pE , and by virtue of (2.29)

_(u_u_.x J - _ 6_4 k) = 2(Pk - p E)a ij
.Lj

(2.35)

The term 2(Pk-P_)aij is of order a2 and (2.35) would again

lead to the results of (2 31) Rodi'. . s assumption also leads

to the neglect of terms of order a z in the Reynolds

transport equations, and the two different approaches are

essentially similiar to the same order,a 2.

If the two non-equilibrium ASM are denoted by ASM/MY

and ASM/R, then ASM/MY is given by (2.31) and ASM/R is given

by (2.33). The three ASM yield a set of algebraic equations

for h_-diuj once a suitable model is proposed for the pressure-

strain terms, Hij. Therefore, the performance of the ASM

will be influenced greatly by the model adopted for Hij.

A similar approach can be applied to model the scalar-

flux equations. As a result, no explicit statement about the

form of diffusive transport in the scalar flux equation

(2.8) is needed. The resultant model is the scalar-flux

counterpart of the algebraic-stress-modelling (ASM) method.

According to the order-of-magnitude analysis of Mellor and

Yamada (1974)the turbulent scalar equation (2.8) reduces to
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p' a/_ _ uiuj ae a_u_
F ax i _xj -ujO axj = 0 (2.36)

where local isotropy of fine scale turbulence have been

assumed. Note that (2.36) does not imply local balance of

production and dissipation of 02.

Gibson and Launder (1976) proposed to approximate the

turbulent scalar flux equation in a parallel manner to

(2.33). Their result gives

- auto +a_ 2i 2i_ - )
pU max m aXm(P UiUm0 + 6im p0) = (Pk__E) - _ (_ -pE0

2k 02

(2.37)

where _ and _ are respectively the production and

dissipation of the scalar fluctuation 02. Gibson and Launder

(1976) then argue that since there is only a weak coupling

between the 02 and _ equations the assumption of local

equilibrium for 02 is suffeciently accurate. Then (2.37) may

be further simplified and written as:

8U i ao 8U i
-;(uiuj_xj+ uj0_j ) + P_i + 7 _(uiuJ2k_xj + _)= 0

(2.38)
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Relations (2.36,2.38) and (2.31,2.33) together with the k-

and _-equations form a two-equation model which can account

for the different production or destruction processes acting

on the Reynolds stress and flux components, and to a certain

approximation also for the transport of these components.

This model is therefore cosiderably more general than the

standard k-E model which employs an isotropic eddy

viscosity. These governing equations in the axisymmetric

coordinate system are given in appendices B through D.

2.4.3 REYNOLDSSTRESS MODELS

The models reviewed so far assume that the local state

of turbulence can be characterized by one velocity scale and

that the individual Reynolds stresses can be related to this

scale by the eddy-viscosity expression. This relation often

implies that the transport of the individual stresses is not

adequately accounted for, even if the transport of the

characterizing velocity scale is. In order to allow for the

different development of the various Reynolds stresses

representing various velocity scales in complex flows and to

account properly for their transport, models which employ

transport equations for the individual stresses uiu j must be

applied. Analogous transport equations are required for the
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turbulent heat/mass fluxes uiS, and the models based on

these equations are often referred to as Reynolds stress

models. The derivation of uiu j- and ui6- equations (2.7,2.8)

and their modelling to obtain a closed system were explained

in previous sections. In general, there are six components

of the Reynolds stresses and three components of the

turbulent scalar fluxes. The modelled equations for these

components, the turbulence dissipation rate E, the scalar

fluctuations 62 and the mean flow equations (2.4-2.6) allow

the calculation of non-reacting variable density flows.

However, for turbulent reacting flows, a combustion model

must also be added. A complete set of the Reynolds

equations in cylindrical coordinate are presented in

appendices E and F.

2.5 NEAR-WALL FLOW MODELLING

2.5.1 WALL FUNCTION

At a solid boundary the no-slip condition applies. This

means that both mean and fluctuationg velocities are zero.

In contrast, the dissipation rate _ is finite and requires

special attention. When the boundary conditions are

specified right at the wall, the equations must be

integrated through the viscous sublayer. This is undesirable

because the high-Reynolds-number turbulence models
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introduced above are not applicable in this region. However,

integration through the sublayer can be avoided by using the

law-of-the-wall function to connect the wall conditions to

the dependent variables just outside the viscous sublayer.

The value of k at the first grid point which is selected to

be outside the viscous sublayer is determined from the k-

balance for a control volume adjacent to the wall and with

diffusive and convective transport through the wall set

equal to zero. On the other hand, E at the first grid point

is calculated from the equilibrium condition. When turbulent

transport equations are solved, the individual stresses

(relative to friction velocity) are specified at the first

grid point (Launder et al. ,1975). More discussion regarding

the wall functions are presented in appendix G.

2.5.2 DIRECT CALCULATION

All the models described so far imply negligible

viscosity effect on the energy containing motions and

negligible effect of the mean strain field on the

dissipative phenomena. These assumptions are generally valid

for high Reynolds-number turbulent flows except very close

to a wall. Here, the no slip condition at the wall ensures

that viscous effect will always be important in the

immediate vicinity of the wall. Although the viscosity
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affected zone has a thickness of two or more order of

magnitude less than the characteristic dimension of the

flow, almost 50% of the velocity change from the wall to the

free stream occurs in this region (Launder, 1984).

Fortunately, it is practical to ignore many of the

complexities inside the viscosity dominated layer by noting

the fact that the important mean and turbulent flow

quantities highly depend on the normal distance from the

wall. In high-Reynolds-number modelling, the calculations

are carried out to the vicinity of the wall and all the

dependent variables are then matched to their corresponding

values determined from approximate wall functions.

Transpiration through the wall, swirl, steep temperature or

streamwise pressure gradients are just a few examples that

may cause the near-wall region to differ from its so called

universal behavior. To account for these various influences

it is necessary to extend the calculation right up to the

wall itself.

In order to provide predictions of the flow within the

viscous sublayer, the form of the models given for high

Reynolds number flows must be modified in three ways. These

are: (i) retain the viscous diffusion of k, _ and _j, (2)

constants in _ and eddy viscosity equations become dependent

on the turbulence Reynolds number, (RT=k2/u_), (3) further

terms are required due to the fact that the dissipation
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processes are not isotropic and this effect must be

accounted for.

Several two-equation, low-Reynolds-number turbulence

models have been proposed by different researches (Launder

and Sharma, 1974; Hassid and Poreh, 1978; Chien, 1980;

Reynolds, 1976; Lam and Bremhorst, 1981). A systematic

evaluation of these models has been performed by Patel et

al. (1985). From an overall examination of the results for

all the test cases, the model of Chien (1980) performs

relatively better than the others. Therefore, this model has

been selected here to calculate the turbulence energy and

dissipation rate. The final modified form of the k and E

equations proposed by Chein (1980) are

- Dk a - k UkUm 8k uiuj a_uui _ 2uk
# Dt- ax k (Cs # E a-xm ) - # axj p (E + -_r)

(2.39)

E

DE a k UkUm _m ) + C_I K5%- k (c ? E (-P uiUj_x3 )

+

E 2uk e-C4Y
(c El2+ 7 )

where

2
2 -RT/36

f2 = 1 - _ e

and y is the normal distance from the wall.
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Recently, So and Yoo (1986) applied asymptotic analysis

technique in a way parallel to Chien (1980) to modify the

viscous dissipation term in the Reynolds stress transport

equations to account for viscous behavior near a wall.

2.6 TURBULENTCOMBUSTIONMODELS

Turbulent reactive flows are difficult to predict for

the simple reason that neither turbulent transport nor

chemical kinetics are adequately understood. Specific

problems of particular interest are the evaluation of the

mean formation rates and the effects of heat release on the

turbulence structure and, in turn, on the turbulence flux

closure models. In order to illustrate the effect of

turbulence on the mean formation rates, consider a simple

irreversible reaction such as

kl
A + B -_ C (2.41)

The instantaneous formation rate of C is represented by the

Arrhenious equation, or

RC = k0 p2 mA mB exp(-El/RT) (2.42)
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where m i is the instantaneous mass fraction of species i, E1

is the activation energy and k 0 is the pre-exponential rate

constant

In order to evaluate the mean formation rate Rc, it is

necessary to decompose each of the fluctuating variables

into their mean and fluctuating components. It is emphasized

that the time-mean rate expression is not simply the

reaction rate calculated from the time-mean variables. For

example

-- 2

R C = m Am 8 p2_ exp(-El/RT) # mAms# k 0exp(-El/RT) (2.43)

Instead, after applying Reynolds

appropriate simplification we obtain:

decomposition and

p

E2_

RC : p mAma0 exp(- _ [i+ (P') 2+

RT _ mAmB P m A P m B

+

--2

El (mq%-I + (_i _I)(T' + .. ]

R_ _A_ 2R_ _2

(2.44)

t • |

which is an infinite series in terms of mAmB, p mk, mkT',

etc. For _C to be evaluated correctly, an infinite number of

these moments containing the variables T' ', m A and m B would

have to be determined. This rate expression is for the
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simple example given by equation (2.44). For any realistic

combustion scheme, many of these equations have to be

considered. It is ideal to be able to handle reacting flows

in which combustion may occur via a large number of finite-

rate reaction steps. However, this would necessitate the

solution of conservation equations for the mean value of

each of the independent species, which in turn requires the

evaluation of the mean formation rate of each species. It is

clear that closure of turbulent reacting flow is a

formidable problem.

At present, only PDF transport equation formulation

offers the possibility of handling large numbers of reacting

species (Pope,1976), but in view of computer storage

requirements, run times and multidimensionality of the

approach, their suitability requires further investigations.

Fortunately, most of the reactions associated with the high

temperature oxidation of hydrocarbon and hydrogen fuels

usually have time scales very short compared with those

characteristics of the turbulence field and the assumption

of fast chemistry thus provides a reasonable description of

the equilibrium composition, temperature and mixture

density. However, the estimation of unburnt fuel, formation

of pollutants, and the study of such phenomena as ignition

and blow out require consideration of finite rate reactions.

The fast chemistry assumption can only be applied to non-

premixed combustion systems where fuel and oxidant are
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injected separately. However, in premixed combustion system,

where fuel and oxidant have been mixed prior to reaction,

only finite-rate chemistry assumption can be invoked because

the species are allowed to come into contact without burning

occurring at the same time. In view of these differences the

following discussion of combustion models will be divided

into non-premixed and premixed combustion. Under non-

premixed combustion, both the fast and finite-rate chemistry

models are discussed.

2.6.1 FAST CHEMISTRY MODEL FOR NON-PREMIXED COMBUSTION

A practical idealized approach in non-premixed

combustion (two-feed) system is based on the assumption that

the chemistry is fast. Its first principal feature is the

neglect of all intermediate reactions so that pure fuel and

pure oxidant will react to form the products the moment they

are in contact. Its second main feature is the assumption

that the effective diffusivity coefficient of all species is

the same. The first is justifiable only by the need to

simplify. The second cannot be very far from reality for a

turbulent flow.

When the chemistry can be simplified to a one-step

reaction such as
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1 Kg fuel + i Kg oxidant _ (l+i) Kg product

we have

Rfu = Rox/i

where Rfu and Rox stand for the rates of creation by

chemical reaction of fuel and oxidant ,respectively.

The consequence of these assumptions is that a suitably

chosen linear combination of the equations describing the

conservation of two-unpremixed reactants yields an equation

whose form is identical to that describing the convection

and diffusion of chemically inert species. The equation

which results will have no source term. The dependent

variable of the resultant equation is usually taken to be

the mixture fraction and is defined as

where 7 is given by

- mfu - mox/i

or

- mfu + mpr/i+l

(2.45)

(2.46)

(2.47)

56



or

-- mox + i mpr/l+i (2.48)

Here mfu, mox, mpr ,and i are the mass fraction of the fuel,

oxidant, product and the stoichiometric oxidant requirement

per unit mass of fuel. Subscript F and O stand for fuel and

oxidant stream, respectively.

Let us now presume that the reaction is every where

complete. This gives the following conditions for e:

mfu = 0 (2.49)0 _ 0 _ Ost 0
mox = mox O (i - -- )

, OSt

and

OSt 5 0 5 1 (0 -Oct)
mfu = mfu,F (I -Ost)

mox = 0

(2.50)

where Ost is the stoichiometric value of the mixture

fraction and is characterized by:

1 (2.51)
est - 1 + i(mfu,F/mox,O )

The mass fraction of the products of combustion can then be

obtained from
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mpr = 1 - mfu - mox (2.52)

Equations (2.49,2.50) are the result of the fact that

thermodynamic equilibrium is supposed to prevail throughout.

This means that finite values of both fuel and oxidant

concentration cannot prevail at the same point.

For adiabatic operation of gaseous flame, the standard

enthalpy is a conserved scalar and thus with the assumption

of equal diffusivity of heat and mass,the local enthalpy,h,

may be calculated directly from

h = 6) h F + (l-e) h 0 (2.53)

where

T

h =I Cp dT + H c mfu
0

(2.54)

H c and Cp are the heat of combustion and specific heat of

the mixture at constant pressure, respectively. If the

specific heat is assumed to be independent of temperature,

then the temperature can be calculated as

h - H c mfu
T = (2.55)

Cp
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As has already been discussed throughout this chapter,

solution of the turbulent, variable-density, differential

equations requires a properly averaged density. It can be

seen from equations (2.4-2.6) that the conventional mean

density is required. However, according to these equations

the Favred-averaging mixture fraction (scalar) is predicted

along with the variance for the Favre-averaged probability

density function (PDF). By using the local instantaneous

equilibrium approximation and convoluting over the PDF, the

Favre-averaged density would result. On the other hand, if

it is realized that the Favre-averaged of the inverse

density is equal to the inverse of the Reynolds-averaged of

the density, Then,

1 ~
! = F/it _ (2.56)
P P

0

where F(6) is the Favre probability density function of the

mixture fraction and is unknown. A straightforward approach

to determine this PDF is to assume a PDF with two

parameters. The two parameters are determined from the first

two moments of the PDF which are obtained by solving their

respective transport equations. Different two-parameter

PDF's have been proposed and tested by a number of
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researchers (Spalding,1971 ; Lockwood and Naguib,1975 ;

Rhodes,1975). However, evidence in support of the 8-

distribution has been provided by Jones (1977) in his

calculation of diffusion flames. We shall assume a 8-

distribution function for F(_ so that

r (a+b) 8-a-_ i__) b-i
F(6) = £(a)F(b) (2.57)

where 0 _ 8< 1 and a > 0 , b > 0.

since

1£

e = J/O[ F_) d_ - a
a--;5 (2.58)

1

I a

82 = (0~- O)2 F(8_ d[= (a+b+l) (a+b) 2

0

(2.59)

constants a, b can be found from (2.58) and (2.59) and are

given by

a = 8 [ e (1 -8) _ 1 ] , (2.60)

b = a (1 - O)
0 (2.61)
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Therefore, once 8 and 82 are known from the solution of

their transport equations, a and b can be determined and

consequently the mean density can be calculated at each node

point.

2.6.2 FINITE-RATE CHEMISTRY MODEL FOR NON-PREMIXED

COMBUSTION

An important problem in finite-rate chemistry is

choosing an appropriate level of complexity, in view of the

large number of species and chemical reactions taking place.

One solution to this problem is the use of a global approach

that reduces chemistry to the specification of an overal

global oxidation scheme. Both mfu and mox can have non-zero

values at the same point at the same time. This model can

predict quantities of interest: fuel consumption and heat

release rates. However, it is the evaluation of the mean

formation rate which presents problems. If fluctuation terms

are neglected and the rate evaluated in terms of the mean

values of the quantities involve in the reaction rate, the

result may be in serious error. To reduce this error, the

eddy breakup model of Spalding (1971) is included. This

model can be written as

Se= CEB U _ # (9 (2.62)
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which is based on the idea that the mean reaction rate is

determined completely by the rate of scale reduction via a

process of turbulence vortex stretching. Generally, one uses

the smaller of these two expressions at a given point in the

flow field. The eddy dissipation rate often slowing chemical

reaction. This basic model has had several refinements,

culminating in the Eulerian - Lagrangian theory of turbulent

combustion (Spalding, 1977).

The one-step reaction model of section 2.6.1 (popular

in the simulation of heat release) may be replaced by a

slightly more sophisticated kinetics model which allows

prediction of local mass fractions of hydrocarbon fuel,

carbon dioxide and nitrogen. Consider the two step

mechanism:

X Y

CxHy + (2 + 4)(02 + nN2)

X C0 + x
(02 + nN 2)

-_ X CO + Y _O + (X + {)nN 2

(2.63)

X CO2 + X nN

(2.64)

The mass fractions of all chemical species obey the general

differential equation. These transport equations are all

similar and contain terms for convection, diffusion and

source $4 of a general variable 4 (which contains terms
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describing the generation and consumption of 4)- In fact,

they all conform to

_xi(PUi4 ) _ _a a_4ax i(F# ax i) = $4 (2.65)

and the equations differ not only in their effective

diffusive flux but also, and primarily, in their final

source terms as defined in Table 2.1.
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Table 2.1 Source terms for chemical species

S

mfu Sfu

mco SCO- r2Sfu

mox rlSfu + r4Sco

mcoz - r5Sco

mH20 - r3Sfu

4A - mox - (_ +_ _ )mfu - _ mco 0

4B - mco2+ _ mCO + _mfu 0

4C -= mH20+ _mfu 0
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where
X Y

rl= (2 +3 ) Wo2/Wfu

r2= X WCO/ Wfu

r3= (Y/2)WH20/Wfu

r4= 0.5 Wo2/Wco

r5= WCo2/Wco

(2.66)

Further, the diffusion coefficient for all species are

related to the turbulent viscosity via the turbulent prandtl

number. For the last entries in Table 2.1, a single values O

with a zero source term and values 0 and 1 in the air and

fuel stream, respectively can provide the solutions for 4A,

_B and _C via the following relationships

e= #A - _A,_ = #B -4B'a_ =4C - 4c,alr (2.67)

4A'fu - 4A,air 4B, fu - _B,air 4C,fu - _C,air

Using Equation (2.66) and assuming that the mass fraction of

fuel in the primary stream is 1 and the mass fraction of

oxidant in the secondary stream is R, we have

mox = r 4 mco + R(I-8) + (rl+r2r 4) (mfu- e)

mco_ _ % (-_u + e) - %_O

mH20 = r 3 (-mfu+ e)

(2.68)

(2.69)

(2.70)
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This scheme involves the solution of the conservation

equations for unburnt fuel, CO and mixture fraction. The

reaction rates of fuel and carbon monoxide are given by the

following relations

Sfu= - min [ CRI P m a bmC exp(-EI/RT) ]fu P mfu ox (2.71)

SCO = - min [ CR2 P m
I .w w d w6 a D c

CO k ' _ P mcomox_H2oeXp(-E2/R-T) ] (2.72)

where CRI , CR2 are the eddy breakup constants and k I , k 2

are the pre-exponential constants for Arrhenius rate

equations.

Many chemical reaction phenomena posses stiff kinetics;

that is, they involve a multitude of species with widely

different reaction rate coefficient. Their equations have to

be solved along with the more usual fluid dynamics

equations. Special computational techniques for handling the

source terms are required. One often solving the associated

time - dependent problem even when the steady state solution

is required. Of course, different time steps are chosen for

the fluid dynamics and chemical kinetic portions of the

problems. An efficient technique for steady state solution

of stiff kinetic problems has been developed by Pratt (1976)
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and shows considerable promise for practical engineering

situations.

2.6.3 MODELFOR PREMIXEDCOMBUSTION

In many combustion systems, fuel and oxidant are

premixed prior to reaction. Premixed flames, spreading

downstream of flame-holders, have been the subject of many

previous investigations concerned with the development of

ram jets and afterburners. In contrast to unpremixed flames

which can be analysed with fast or finite-rate chemistry,

premixed turbulent flames are kinetically controlled and the

rate of flame propagation, called the burning velocity, is

dependent upon chemical composition and rate of chemical

reaction. Completely premixed flames are seldom found in

practice for reasons of safety, (for example flashback and

blow off) and Stability. For this reason, and may be these

type of flames occur less frequently in practical systems,

they appear to have received less attention than have

unpremixed flames. It is only in recent years, however, that

detailed attempts to understand the flow characteristics,

with the aid of local measurements, have been reported

(Stevenson et al. ,1983). A detailed discussion of premixed

turbulent flames is given by Bray (1980) and a review of

various methods developed for calculating premixed turbulent

flames is given by Jones and Whitelaw (1982).
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In general, most work on premixed flames has assumed

that combustion can be characterized by a global single step

reaction of the type shown by equation (2.41). In terms of

the three - component mixture undergoing a simple one step

reaction, partial differential equations are set up for mfu,

mixture fraction and stagnation enthalpy, with the first of

these for mass fraction of fuel requiring the specification

of its source, the mean formation rate of fuel. In earlier

sections the Arrhenius expression was introduced, but

clearly its mean value should not be calculated merely from

mean values of components in its expression. If fluctuations

are neglected and the rate evaluated in terms of the mean

values of temperature and mass fraction, the result can be

in error by typically one order of magnitude and will

exhibit a strong dependence on temperature, pressure and

mixture strength (Jones and Whitelaw, 1982). In practice,

experimental results for premixed turbulent flames are only

weakly dependent on mass fractions, pressure and

temperature. This fact led to the turbulence dominated mean

reaction expression called the eddy breakup reaction model

described earlier. It is based on the idea that the mean

reaction rate is determined solely by the rate of scale

reduction via a process of turbulence vortex stretching. The

model, thus takes no explicit account of chemical kinetics

and relates to combustion which is entirely mixing

controlled (Jones and Whitelaw, 1982). In this situation, it
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has been shown to be in good accord with the available

evidence for premixed flames. The model has also been used

occasionally for non-premixed flames, but it is generally

inappropriate in this situation and Pope (1977) has shown

that it does not necessarily provide unique solution. A more

logical basis for expressions of the eddy breakup type is

provided by the Bray-Moss (1977) model for premixed flames.

The Bray-Moss model for premixed combustion has been

extended by Libby and Bray (1980a, 1980b), who utilize the

concept of laminar flamelets in order to derive models for

turbulent transport and dissipation processes in one

dimensional planer flames.

For two-step reaction rate,the solution of the

conservation equations for unburnt fuel and carbon dioxide

CO2 (or carbon monoxide CO) is involved . The mass fraction

of intermidiate species are determined by the following

algebraic relations

mco= Zco- r2mfu - (mco2)/r5

mH2o= ZH2 o- r3mfu

m + - (r4mco_/r 5o2 = Zo 2 rlmfu

(2.73)

(2.74)

(2.75)

where

Zco = r2mfu,p

Z = m -
02 o2,P rlmfu,p

(2.76)

(2.77)
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ZH2o = r3mfu,p (2.78)

and mfu,p and mo2,p are mass fractions of fuel and oxidant

in primary stream, respectively. The mean reaction rates are

calculated from the minimum of the Arrhenius reaction rates

and the eddy breakup model similar to (2.71) and (2.72).
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CHAPTER3

NUMERICALPROCEDURE

The governing partial differential equations described

in the preceeding chapter are coupled and non-linear. At the

present time, it is not possible to obtain analytical

solutions to these equations and numerical technique has to

be used. A computer program has been developed to solve

axisymmetric elliptic partial differential equations through

an iterative procedure based on an integral control volume

analysis with hybrid upwind finite differencing or quadratic

upwind differencing and staggered grids. The logic behind

this program is briefly described below.

3.1 GRID AND ITERATION SEQUENCE

Before integrating the standard equations over the flow

domain, a satisfactory grid is required. For hybrid

differencing purposes the program uses a staggered grid in

which the velocities are evaluated at the boundaries of

scalar variable (P,k,_, etc) cells. Hence separate grids

define the locations of the U- and V-velocities. A portion

of these three grids is shown in Figure 3.1 . The solution

domain is arranged so that the outer surfaces of the
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boundary scalar cell coincide with the physical boundaries

of the flow field (Figure 3.2).

The iteration sequence consists of two major parts: the

SIMPLE solution algorithm of Patankar and Spalding (1972),

and the solution of transport equations for the turbulence

quantities. The SIMPLE algorithm solves for a fixed pressure

field, by line iteration, sets of difference equations for

the x and r momentum equations. After each such sweep over

the solution domain, adjustments are made to the pressure

field to satisfy continuity along each line of cells. These

adjustments in turn destrory the compliance of the velocity

and pressure field with the momentum equations. Transport

equations for the turbulence quantities are then solved

using the calculated velocity field . Finally, closure is

achieved by evaluating the Reynolds stresses using the new

mean velocity, turbulent kinetic energy, and dissipation

rate fields. Iterations are carried out until the momentum

and continuity equations are simultaneously satisfied to the

required degree of accuracy.

3.2 FALSE DIFFUSION

It is a well-known fact that all upwind scheme,

although numerically very stable, introduce false diffusion

into the formulation. It is this false diffusion that acts

to stablize the numerical solution as it becomes larger than
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the physical diffusion for Pe>2. The exact value of false

diffusion for one dimensional convection-diffusion equation

is (Patankar, 1980):

IUI AX IPel r
r - - (3.1)

x,f 2 2

This is not serious when the streamlines are aligned with

the grid lines, because, in this case, false diffusion

occures in the direction of the velocity vector and is of

little consequence for larger Pe numbers. However, when the

streamlines are at an angle to the grid lines, false

diffusion in the x and r directions combine to give a

diffusive flux normal to the velocity vector which can lead

to large errors when the variable considered has a

significant gradient in this normal direction. That the

upwind scheme must lead to errors in such a situation

becomes clear immediately from Figure 3.3 which shows that

it is not the value Cw that is convected across the west

face but the value Cw-sw indicated in this figure. An

approximate expression for the false diffusion coefficient

for a two dimensional situation has been givened by de Vahl

Davis and Mallinson (1972). It is
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F false
= pU AX Ar sin(28) (3.2)

4(Ar sin 38+Ax cos 3 8)

where U is the resultant velocity, and 8 is its angle to the

x axis. It is seen from this equation that the false

diffusion is most serous when the flow direction makes an

angle of 45 ° with the grid lines. False diffusion can be

reduced by using smaller grid size and by orienting the grid

such that the grid lines are more or less aligned with the

flow direction or using higher order schemes.

The recently developed skew-upwind and quadratic-

interpolation schemes have been shown to perform better in

all situations where streamline skewness causes numerical

diffusion. Both schemes produce similar results. According

to Leschziner (1980), the quadratic scheme requires no more

computing time than the hybrid scheme, but the skew-upwind

scheme needs about 50 percent more time. For this reason and

also because it is easier to implement, the quadratic scheme

became more popular and is explained in the next section.

3.3 QUADRATIC UPWIND DIFFERENCING SCHEME

Upwind differencing scheme, although very stable, is

only first-order accurate and suffers from false diffusion.

A promising new technique proposed by Leonard (1979), which
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is known as QUICK (Quadratic Upstream Interpolation for

Convective Kinematic), aims at combining the relatively high

accuracy of the central difference scheme with the stability

of the upwind scheme. QUICK uses a three-point upstream-

wighted quadratic interpolation for each cell's wall value,

two located on either side of the face and the third being

the next node in the upstream direction.

Using quadratic interpolation for the dependent

variable _, it can be shown that the finite difference form

of any convective-diffusive equation is reduced to

A_ =A_ +A_ +A_ +A_ +

P P E E W W N N S S

A # + A • + A • +A

EE EE 'dW WW NN NN SS SS

(3.3)

The derivation of _w is given in detail below and the

derivation of • at the other faces are similiar.

A general second degree polynomial for the calculation

of _w is

_w = CO + ClX + C2x2 (3.4)

The mathematically equivalent but more convenient quadratic

form is

75



= CO + CI(X-X P) + C2(X-X P) (X-X W) (3.5)

where the constants C0, Cl,and C2 are determined from the

neighbouring points. Consider the situation for positive

axial velocity in which case calculation of _w is biased

toward the upwind node at XWW , then :

C = _ , (3.6)
0 P

_W - _P

C -- , (3.7)

1 x W - Xp

_WW - _P _W - _P 1

C = ( ) ( ) (3.8)

2 XWW - Xp x W - Xp XWW - x W

and for the case when the axial velocity is negative, the

coefficient in Eq.(3.5) are calculated using the values of

at the grid node W, P, and E so that:

C = _ , (3.9)
0 P

_W - _P

C - , (3.10)

1 X W - Xp
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#E - _P _W - _P 1
C =( )(

2 x E - Xp xW - Xp xE -x W
) (3.11)

The quadratic interpolation scheme is therefore third-order

accurate; requires 9-point and must take the sign of all

face velocities into account. This algorithm was extended to

two dimension by applying a similiar procedure in the cross-

stream direction. Like the central-difference scheme, the

quadratic scheme does not produce diffusion-type truncation

error, but it may suffer from some unboundedness. Han et al.

(1981) further report that, unlike the upwind scheme, the

quadratic scheme is not unconditionally stable and may

require certain special measures to produce stability.
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CHAPTER4

MODELEVALUATIONS

This chapter presents the results of the comparisons of

the various models for isothermal, constant and variable

density turbulent recirculating flows. Predictions obtained

with each of the turbulence models are discussed and, when

available, compared with experimental data. The goals of

this study require a careful selection of the test cases.

They have to provide reliable mean flow and turbulence data

in the recirculation and recovery regions. A detailed

specification of the flow parameters in the upstream region

is also essential since these are used as inlet conditions

to start the computations. However, the most common

shortcoming is found to be the lack of well-defined inlet

boundary conditions. The importance of these quantities has

not been fully appreciated (Sturgess et al. ,1983).

Incorrect specification of inlet turbulence quantities could

have a further adverse effect if the flow is a reacting one.

This is because the eddy break-up combustion model relates

the reaction rate of the fuel to the eddy lifetime, k/_. An

incorrect specification'of k and E at the inlet therefore

results in an incorrect density field. Since density is

strongly coupled to the mean flow field, an incorrect
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density changes the mean flow field completely. Finally, all

data sets have to meet the criteria set by Eaton and

Johnson(1980) for acceptable measurements in terms of

adequate experimental facility, appropriate instrumentation,

and agreement with generally accepted flow trend.

After reviewing some of the available data sets the

following three are chosen as the test cases:

i. Johnson and Bennett (1981); confined coaxial

non-swirling suddenly-expanded jets

2. Roback and Johnson (1983); confined coaxial

swirling suddenly-expanded jets

3. Brum and Samuelsen (1982); CO 2 into air

(three coaxial streams with middle stream swirling)

Only a portion of the predictions and comparisons with

measurements are presented. These are chosen to illustrate

specific points concerning the turbulence models and their

performance.
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4.1 THE BASIC EXPERIMENTALFLOWFIELDS

The cases of Johnson and Bennett (1981), and Roback and

Johnson (1983) are selected for comparison with the

calculated mean and turbulence quantities in a constant

density flow. The experiments are carried out in a water rig

that resembles closely a gas turbine engine (can) combustor

(Figure 4.1). The flow conditions selected for this study

have Reynolds numbers of 15900 and 47500 for the inner and

annular streams, respectively. These Reynolds numbers are

factors of 5 to 20 greater than the transitional Reynolds

number range occurring in aircraft gas turbines. Mean

velocity and turbulence fluctuations were measured with a

Laser Doppler Velocimeter (LDV). The scalar transport

measurements were made using a Laser-Induced Fluorescence

(LIF) technique. Fluorescein dye was introduced as a tracer

into the water flow of the central jet to give constant

density, variable species, mixing of the two concentric

jets. This permitted the modelling of turbulent mass

transport to be investigated. Sketches of the flow regions

occurring for the swirling and non-swirling flow conditions

are shown in Figure 4.2. For the non-swirling flow, four

major shear flow regions can be identified. These are: a

wake region immediately downstream of the inner jet inlet

duct, a shear region further downstream between the inner

and annular jets, a recirculation zone, and a reattachment
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region. A three-dimensional counter-rotating corner eddy is

also observed and extends only a short distance, less than

one step height downstream of the step. The large primary

eddy occupies the rest of the recirculation zone. For

swirling flow, a second recirculation cell occurs along the

centerline and the length of the annular recirculation cell

is decreased. One other difference between the swirling and

non-swirling experiments should be noted. This is the

observation that, once reattachment of the annular jet

occurred, the axial velocity profile tended to flatten with

momentum transport from the outside inward for the swirling

flow case whereas the velocity profile tended to flatten

with momentum transport from the inside outward for the

nonswirling flow case.

For variable-density flow analysis, the isothermal,

non-reacting flow inside a dilute swirl combustor provided

by Brum and Samuelsen (1982) is selected. The dilute swirl

combustor is designed with a cone-annular gas injector, a

swirling stream and a non-swirling stream of dilute air. The

complex model laboratory flow combustor (Figure 4.3) has an

aerodynamically controlled, swirl-stabilized recirculation

zone. It consists of an 80 mm I.D. cylindrical stainless

steel tube 50 cm long with rectangular optical windows

mounted vertically on either side of the combustor tube.

These flat windows provide for clear optical access

necessary for laser anemometry measurements. A set of swirl
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vanes (57 mm O.D.) is concentrically located within the

combustor tube around a 19 mm O.D. centrally positioned

fuel/CO 2 delivery tube. The combustor was operated at

atmospheric pressure with an overall equivalence ratio of

0.2 and a bulk reference velocity of 15 m/s.

4.2 EVALUATION OF DIFFERENT CLOSUREMODELS

FOR COMBUSTORFLOWCALCULATIONSWITHOUT SWIRL

In this section the comparison is made of the

performance of the k-_ closure, algebraic stress closures

and Reynolds stress closure in calculating the combustor

flows. Effects of different pressure-strain models and

turbulent diffusion models are also analysed. Predictions of

the mean and turbulence quantities using high and low

Reynolds number models are compared. Finally, the efficient

models for turbulent momentum exchange in combustor flow

calculations are identified.

4.2.1 THE k-_ MODELRESULTS

The mean and turbulence quantities predicted by the

standard k-_ model and the measured values are illustrated

in Figures 4.4 - 4.6. The model constants used in this

calculation are listed in Table 4.1. The overall agreement

is good and the calculated velocity and maxima and their

locations closely reproduce the experimental results. The

recirculation zone and the reattachment length has been
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reasonably predicted (Tables 4.2-4.3). There are however,

some discrepancies in the region of the center line with the

velocities being under-predicted by about 5% - 30% at the

downstream locations. The change in the axial velocity

profile from x = 13 mm to successive locations downstream

document the development of the various shear regions within

the combustor. The shear layer between jets occurred between

x=51 mm and 203 mm. In this shear region, the annular jet

flow accelerated the inner jet flow but the predicted result

does not show such a behavior and the centerline velocity is

contineously decreased (Figure 4.7). The under-prediction

for a centerline velocity stems from the incorrect

representation of the turbulent diffusion process. As shown

by Ribeiro (1976), the radial normal stress is particularly

important in the upstream region and, as a consequence, the

isotropic viscosity hypothesis is inadequate.

Comparison of the predicted turbulent kinetic energy

with data are shown in Figure 4.5. The predicted k values

are in good agreement with the data near the inlet plane.

However, the k-c model under-predicts the k values further

downstream near the centerline. The discrepancy near the

centerline is due to: (i) under-prediction of the

corresponding maximum in the mean velocity, (2) inadequacy

of the eddy viscosity hypothesis, and (3) over-prediction of

turbulent kinetic energy dissipation rate, E. The inlet

distribution of length scale has a significant effect on the
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distribution in the upstream region where the diffusion

terms have a large effect on the mean velocity; it has no

significant effect in the downstream region where the

diffusion effects are smaller. The k-_ model tends to

connect the dissipation rate too strongly to the local mean

velocity field (Habib and Whitelaw, 1979) which is

inappropriate since the dissipation occurs in the finest

scales of motion and these do not reflect the local mean

strain field. These connection tends to increase the local

level of _. The predicted turbulent shear stress ,u-v,

profiles are also in very good agreement with the data

(Figure 4.6). At x = 13 mm, the negative peak value for u--v

near the axis corresponds to the shear layer between the

inner and annular streams and the positive peak corresponds

to the shear layer associated with the pipe expansion.

4.2.2 THE ALGEBRAIC STRESS MODELRESULTS

Prediction results for non-swirling flow using Hij

model given by eq. (2.13) are shown in Figures 4.8-4.13,

while the comparisons of different Hij models given by

eqs.(2.13,2.14), (2.13,2.15) and (2.13,2.16) are presented

in Figures 4.14-15. The various models used in this

investigation and the recommended values for the constants

appearing in these models are presented in Tables 4.4-4.6.

The details of these calculations have been discussed by

Nikjooy et al. (1985).
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For a fixed pressure-strain model, the calculated mean

and turbulence fields obtained from the three different ASM

are essentially identical and are in good agreement with

measurements. Some slight differences can be identified;

however, they are not substantial enough to lead one to

conclude that one ASM is better or worse than another. In

general, the flow is very well predicted in the near and far

field but not so well calculated in the mid-field. This is

especially true of the flow near the combustor core, where

the calculated mean axial velocity and turbulent normal

stresses are consistently lowered than the measurements

(Figures 4.8,4.11-4.13). The recirculation zone is very well

predicted by all ASM. One surprising result of the present

study is given by the calculations of the k-E closure

(Figures 4.8-4.10). Essentially the same calculated

distributions of U, k and u--v are obtained when the k-E

closure is used instead of the ASM. Indeed, the k-E closure

gives a k distribution that is in as good an agreement with

measurement as that given by ASM/E (Figure 4.9).

A second interesting result of the present study can be

found in the comparison of the different Hij models. Here,

the effects of the four Hij models are discussed. Instead of

giving rise to improved correlations with measurements as

anticipated, some of the calculations are actually in worse

agreement with measured data for ASM/MY and ASM/R (Figures

4.14,4.15). As for the ASM/E, very little differences are
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noted for the four _ij considered, except in the prediction

of the reattachment length. Also, the choice of the mean

strain model has a great effect on the calculated turbulence

field. The results shown in Figures 4.14 and 4.15 for the

nij given by (2.13,2.14), (2.13,2.15) and (2.13,2.16),

respectively, are selected to illustrate the points made

above. In general, the comparisons for other stream

locations are quite similar to those shown in Figures 4.14

and 4.15. Depending on the non-equilibrium ASM used for

closure of the flow equations, _ij,2 modelling given by

(2.14) or (2.15) will lead to prediction of double peaks

behavior for the turbulence field (Figure 4.14), which are

not observed in the experimental flow. Such behavior is not

found in ASM/E calculations, though. One reason for this

could be due to the fact that the constant C 2 used is not

suitable for complex turbulent flows. Since C 2 is determined

for simple turbulent flows in local equilibrium, it would be

more appropriate for ASM/E than for ASM/MY and ASM/R.

Another reason could be the incorrect modelling of the mean

strain part of the pressure-strain terms by (2.14) and

(2.15). The results shown in part (c) of Figures 4.10 and

4.11 illustrate the importance of accounting for the anti-

symmetric contributions of the mean strain tensor as given

by (2.16). With this improvement, the anomalies seen in

parts (a) and (b) of Figures 4.14 and 4.15 disappear with

the exception of the calculated v_ using ASM/R closure.
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Therefore, it is very important to model the mean strain

tensor correctly. Either the mean strain effects are not

modelled at all, as in (2.13), or they should be accounted

for properly, as in (2.16).

Another measure of the performance of the different

turbulence models is in the calculation of the reattachment

length. This length is determined by locating the point of

zero shear at the combustor wall. Factors which influence

the reattachment length may be classified in one of two

groups: (i) system geometry, (2) upstream conditions. System

geometry has a significant effect on reattachment length.

The two primary geometric parameters influencing the sudden

expansion flow are: (a) d2/dl, the expansion ratio, where d1

is the diameter at the inlet to the sudden expansion and d2

is the diameter of the downstream tube. (b) d2/(d2-dl) ,the

aspect ratio. Upstream conditions which have an effect on

reattachment length in the sudden expansion flow are: (a)

the inlet flow Reynolds number, (b) centerline turbulence

level, (c) inlet Mach number. So (1986) has examined the

effects of these parameters on reattachment length in an

axisymmetric sudden-expansion flow. Based on his analysis,

it was reported that the single most important parameter

that influences the reattachment length is the centerline

turbulence level. The results of the fifteen different

calculations are listed in Table 4.3 together with the

measured reattachment length determined from Johnson and
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Bennett (1981). It can be seen that the best estimate of the

reattachment length is given by the k-E and ASM/E closures,

while the worst is given by the ASM/R with Hij deduced from

(2.15) .

An Attempt is made to assess the lack of differences

shown by the calculations of the three ASM closures (Figures

4.8-4.13). The calculated turbulent viscosities of the three

ASM closures are compared with the numerical viscosity

(Figure 4.16). It can be seen that the turbulent viscosities

are quite a bit smaller than the numerical viscosity in the

inlet region of the combustor and are of the same order at

or near the dividing streamline of the recirculation zone.

Consequently, calculations in the near field and the

recirculation region are being masked by the numerical

viscosity and the errors would propagate through the whole

field. Unless the numerical viscosity is significantly

reduced, the improvements afforded by more sophisticate

turbulence closures will not be realized for complex

turbulent flow calculations. In addition to hybrid

differencing scheme, the Quadratic Upwind Differencing (QUD)

scheme of Leonard (1979) was also explored. The results are

very much similar to the hybrid scheme predictions. It

should be pointed out that QUDreduces false diffusion, but

does not eliminate it entirely (Figure 4.17)
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4.2.3 REYNOLDSSTRESS MODELRESULTS

Having demonstrated the effect of the pressure-strain

correlation and compared the k-_ model with ASM, attention

is now turned to the performance of the Reynolds-stress

model (RSM). It seems somewhat paradoxical that the more

advanced types of turbulence model have been least

successful in the complex flows associated with flow

recirculation for which (in theory) they have the most to

offer compared with eddy viscosity based closures. The

difficulty in clearly demonstrating calculations free of

numerical errors has hampered the real testing of Reynolds

stress closures in such flows due to the practice of using

upwind differencing for discreption of the convection terms.

This practice is resulted in the phenomenon of numerical

diffusion and to produce a scheme which is slow to respond

to grid refinement. Although local selective mesh refinement

can be used to obtain numerical error-free predictions when

using eddy viscosity based models, this become totally

impracticable when considering Reynolds stress transport

closures where the lack of an eddy viscosity increases the

local cell Peclet numbers and the associated numerical

diffusion coeffiecients by orders of magnitude. Unless

numerically accurate solutions are developed, the

improvements afforded by advanced turbulence models will not

be realized for complex recirculating flows.
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Effects of two different turbulent diffusion models

(2.18,2.19) on the Reynolds stress closure are investigated

(Figures 4.18-4.21). The predicted results of the mean

velocity and turbulent shear stress, u--v fields obtained from

these two models are very similar. However, some differences

are observed in the prediction of the peak values of the

normal stresses. In the fully developed region, the model

developed by Daly and Harlow (2.18) performs better,

especially near the centerline. Despite the superiority of

Hanjalic and Launder's model (2.19) in a theoretical sense,

it does not appear to give better predictions.

For a fixed diffusion model (2.19), two different

pressure-strain models are employed to predict the mean and

turbulence quantities. In one case, mean strain rate effects

are not considered and in another, these effects are

accounted for using the Launder et al. model (2.16). The

predicted results of mean velocity and turbulent stresses

are illustrated in Figures 4.22-4.25. It can be seen that,

both models performed similarly. However, Rotta's model

(2.13), gives a better prediction of the normal stresses.

In comparison with other simple closures (k-c and ASM),

it can be seen that the major discrepancy arises in the

prediction of reattachment length (Table 4.3) and centerline

values (Figures 4.26-4.30). In spite of its higher class of

sophistication, RSM under-predicts the size of the

recirculation region. A question arises here on the mass
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flow rate in the combustor displayed by the measured data;

this seems larger than in the calculations, which certainly

conserve mass between inlet and exit from the solution

domain. This feature is also to be seen in the comparisons

shown by Mansour et al. (1983) and Hackman et al. (1984),

where the area under the predicted velocity curves is

clearly less than under the measured data. It is possible

that transverse side-wall boundary layer growth in the

experiment caused acceleration on the centerline of the

combustor, but it is difficult to do more than speculate.

It is speculated by McGuirk et al. (1985) that the k-_

deficiency is caused by the model's inability to represent

the normal stress-normal strain production terms properly.

This feature still remains in the RSM calculations, as is

shown by the distribution of the two contributions to the

production of k from shear and normal stress terms in the

profiles drawn in Figure 4.31 at an axial station near

reattachment. Although positive values of the normal stress

term are obtained near the axis, they represent only about

10% of the maximum shear stress production. Estimate made

from the measurements of recirculating flow reported by

Taylor and Whitelaw (1984) show that the maximum values

should be of the same order, so that even in the RSM

calculations the normal stress production is too small by an

order of magnitude.
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So far computations have been performed by using a high

Reynolds number model and 51x41 non-uniform grid system. The

conventional wall law has been adopted to connect adjacent

grid lines to the wall boundary. However, results do not

show any trace of the secondary circulation observed

experimentally. The switchover to a fine-grid (51x50), low-

Reynolds-number analysis has had a significant effect on the

predicted flow pattern in this region. An appreciable

secondary eddy is now formed which extends almost one-step

height downstream and one-tenth of a step height normal to

the wall (Figure 4.32). It is because of the thinness of

this secondary eddy that the wall-function approach failed

to predict its existence. Comparison of the calculations

with a high and a low Reynolds number model results show

that outside the viscosity dominated region, the two models

performed with just about equal success (Figures 4.33-4.34).

However, transpiration through the wall and steep

temperature gradients due to large imposed wall heat fluxes

or frictional heating are just a few of the cases that may

cause the near wall region to have more influence on the

core region. Despite the limitations of the turbulence

model, the replacement of wall function by a fine-grid

treatment has allowed a more realistic modelling of the flow

just downstream of the step.
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4.2.4 CONCLUSIONS

Based upon the preceding discussion,

conclusions can be summarized as follows.

Several main

i. As far as the mean field prediction is concerned, k-_

closure performs just as well as any ASM closure in the

calculation of combustor flow.

2. The reattachment length is reasonably predicted by the k-

E closure.

3. The effects of pressure-strain modelling on the

calculations are large compared to the effects of different

ASM closures.

4. If the mean strain effects on the pressure-strain terms

are to be accounted for, they should be modeled by the

Launder et al. (1975) model.

5. The simplest pressure-strain model (2.13) gives as good a

correlation with measurements as the model given by (2.13,

2.16)

6. The best correlation with measurements for combustor flow

calculations is given by the ASM/E closure with Hij

determined from (2.13).

7. The best prediction of normal stresses is given by the

ASM/E closure with Hij determined from (2.13).

8. The best prediction of shear stress is given by the ASM/E

closure with Hij determined from (2.13) or the k-_ closure.
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9. Turbulent diffusion model developed by Daly and Harlow

(1970) results in better predictions than the Hanjalic and

Launder (1972) model.

I0. Reynolds stress models do not seem to yield better

predictions than the algebraic stress models.

ii. Low-Reynolds-number model prediction of the near wall

region is more realistic and show the corner recirculation

region.

4.3 MODEL EVALUATIONS FOR COMBUSTORFLOW

CALCULATIONS WITH SWIRL

In this section, performance of the k-E closure,

algebraic stress model (ASM) and Reynolds stress model (RSM)

are evaluated and compared with data. In the previous

section, it was concluded that the turbulent diffusion model

developed by Daly and Harlow (1970) results in better

predictions than the Hanjalic and Launder (1972). Therefore,

this model is employed for RSM calculations. Based on some

preliminary calculations, it was found that the mean strain

rate effects have to be accounted for. Otherwise, predicted

results of the normal stresses show negative values in some

regions of the flow fields. Therefore, these effects are

approximated by the Launder et al. model (2.16)

The data of Roback and Johnson (1983) represent a

carefully measured turbulent water case with a 30 degree,
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free swirler. Inasmuch as inlet profiles were not provided,

Calculations were started at the first measurement location,

which was just downstream of the expansion plane (5 mm).

This approach is unsatisfactory because the input length

scales of turbulence used to calculate dissipation rate are

unknown and the effect of area expansion on the flow has not

been properly accounted for. The ability to predict the

existence and location of the central recirculation zone in

this combustor is a good indication of the suitability of

the model.

4.3.1 THE k-E MODEL RESULTS

The centerline plot of the axial velocity is provided

in Figure 4.35. The k-E model mimics the data trend

reasonably well along the symmetry axis, however, the rate

of recovery is under-predicted. The reason is not easily

resolved. Comparison of the calculated mean axial and

tangential (azimuthal) velocity profiles with the

experimental data are presented in Figures 4.36 and 4.37. In

this case, the k-_ model fails to display the size and

strength of the experimental recirculation zone. The

predicted axial profile is skewed tward the wall in

accordance with the data trend, although the maximum value

decreases slightly with a corresponding increase in the

near-wall region. At the farthest downstream locations, the

k-_ model produces a decreased axial velocity near the
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centerline, indicative of its lagging characteristics and

apparent slow recovery. The k-_ model prediction of

tangential velocity is excellent up to a station of 152 mm

from the expansion. At subsequent downstream locations,

calculation of the azimuthal velocity decays prematurely to

a forced vortex profile, while the experimental data still

shows a combined vortex profile. Over most of the radius,

the measured tangential velocity is approximately constant

and only rapidly approaches zero at the centerline from a

radius of about 2 cm (r/R= 0.33). Further downstream from

305 mm (x/R=5), the calculated flow approximates a forced

vortex while the measured flow approximates a free vortex in

the outer region, with a forced vortex core.

4.3.2 THE ALGEBRAIC STRESS MODELRESULTS

For a pressure correlation model given by Launder et

ai.(2.16), three different ASM's are compared. Results show

that the calculated mean and turbulence fields are very

similar for all the ASM's and are in good agreement with

measurements at most of the locations (Figures 4.38-4.41).

The tangential velocities obtained from the three ASM's are

also very similar and in very good agreement with the data.

The algebraic stress models provide profile shapes which are

remarkably similar to the exhibited data trend, although the

swirl velocity predictions are reduced in magnitude from the

measurements. The discrepancy in tangential velocity
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profiles is probably generated in part by incorrect inlet

radial velocity profile. The measurements of mean axial and

radial velocities at downstream stations indicate that the

tangential velocity profile at 405 mm is in equilibrium. A

free vortex is not a stable profile, and viscosity effects

at the core modify the profile to the stable forced vortex

form locally, as indicated at 405 mm. Therefore, the

discrepancy in tangential profiles could also be due in part

to an inadequate calculation of eddy viscosity across the

radius.

Figure 4.40 displays the fluctuating axial velocity at

various locations. All the algebraic stress predictions are

similar to the exhibited data trend with a slight under

prediction of stress magnitudes. This may be due to the

modelling of the terms in the pressure-strain correlation

and the constants used. Consequently, it cannot be implied

that the algebraic stress model exhibits a superior

prediction capability. The lack of agreement between the

predictions and the data may be attributed to experimental

error, boundary conditions, numerical diffusion, and

oscillatory phenomena. However, it is difficult to separate

the relative effects and apportion to each its respective

contribution to error.
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4.3.3 REYNOLDSSTRESS MODELRESULTS

Results of the mean and turbulence field obtained from

the k-_ model and the ASM were compared with the Reynolds

stress model (Figures 4.42-4.45). A wide disparity exists

between the models prediction of the axial velocity near the

centerline. It is evident that there are substantial

differences in the capability of the various models to

promote or hinder formation of the recirculation zone

relative to the k-_ model. The comparison of the calculated

and measured locations of the forward and rear stagnation

points along the centerline for five different models is

presented in Table 4.7. It is clear that the proper

turbulence model is dependent on the location within the

flow field. With regard to the comparison between

measurements and calculations, the predictions by RSM seem

to be slightly better than ASM for tangential velocity,

while those by k-_ model are closer to experimental data for

the central recirculation. An examination of the calculated

Reynolds stresses indicates that the relative performance of

the model is strongly dependent on the flow region.

4.3.4 CONCLUSIONS

Based upon the preceding discussion,

conclusions can be summarized as follows.

The main

i01



i. As far as the mean field prediction is concerned,

algebraic stress model (ASM) and Reynolds stress model (RSM)

perform better than the k-E closure in predicting the

tangential velocity profiles.

2. The mean strain effects on the pressure-strain terms must

be accounted for.

3. The central recirculation region is over-predicted by the

ASM and the RSM; however, it is under-predicted by the k-E

closure.

4. The Reynolds stress model does not yield any better

predictions compared

calculations.

5. Inlet conditions

to the algebraic stress model

are the most important factor in

determining the location, size, and the strength of the

central recirculation region.

4.4 SCALARTRANSPORTMODELLING AND COMPARISON

In the present study, the experiments of Johnson and

Bennett (1981) and Roback and Johnson (1983) are chosen to

compare with the calculation results. These experiments are

selected because of their unique turbulent mass transport

measurements.
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4.4.1 NON-SWIRLING FLOWCALCULATIONS

In the present study, the mean velocities and Reynolds

stresses predicted by Reynolds stress closure are used to

calculate the mean mixture fraction, e, the RMS of the

fluctuating mixture fraction and turbulent mass flux for

non-swirling flow (Figures 4.46-4.50). The various models

used for turbulent scalar flux and the recommended values

for the constants appearing in these models are listed in

Table 4.8-4.10. In the present study, firstly, the effect of

the two algebraic flux closures (2.36,2.37) with two

different pressure-scalar gradient models on combustor flow

mass transfer are analysed (Figures 4.46-4.48). Secondly,

the components of the scalar flux are obtained directly from

solution of their respective modelled transport equations.

The effect of pressure-scalar gradient models are also

investigated. All the model predictions are essentially

identical and are in good agreement with measurements. Some

slight differences can be identified, however, they are not

substaintial. In the case of mean concentrations, the

calculated profiles at x=51 mm, x=102 mm and x=305 mm, are

in close agreement with those measured. Between x=152 mm and

x=254 mm where the transport in the axial direction is

comparable to or larger than the radial, some discrepancies

near the axis of the tube are seen. Here, the turbulent

diffusion rates are anisotropic. Although this effect has

been considered in the modelling, the model did not respond
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effectively in the non-isotropic region of the flow field.

The shapes and thickness of the concentration profiles are

in reasonable agreement with measured values, however, the

calculated concentrations at and in the vicinity of the

center line are over-predicted by around 20% . This is

consistent and at least in part a consequence of the low

mean velocities calculated in this region. The error is

probably due to experimental errors, because the predicted

levels of the mixture fraction are required to conserve the

mass flux of dye. The fluctuation profiles show that the

models under-predict the peak values almost at all the

locations. These predictions suggest that the constant

associated with the dissipation of fluctuations should be

lower than the present choice in some portions of the flow

field.

The results of the transport equations for turbulent

scalar fluxes (Figures 4.49-4.50) show that the predicted

mean concentration are in better agreement with the data

although the turbulent mass flux has been over-predicted

near the centerline. It seems reasonable to increase the

diffusion rate of the turbulent mass flux through its

constant.

Finally, it should be pointed out that Mellor and

Yamada's model gives a linear set of algebraic equations for

u_j and _-ui" This is much more easy to solve and less time

consuming than the set of non-linear algebraic equations

104



obtained from Rodi's model (2.33) ,and Launder and Gibson's

model (2.37).

4.4.2 SWIRLING FLOWCALCULATIONS

For swirling flows, effects of two pressure-scalar

gradient correlation models (2.22,2.23) on two Algebraic

Flux Models (AFM) are also investigated (Figures 4.51-4.53).

The calculated mean and turbulence fields obtained from

these closure models are very similar. Some minor

differences are observed. However, they are not significant.

The agreement between the predicted and the measured mean

concentration profiles at most of the locations are

excellent, except near the axis at the central recirculation

zone (x=51 mm). The discrepancy could be due in part to an

inadequate calculation of the centerline velocity. The

radial turbulent mass transport rate profiles indicate that

radial transport occurred at axial locations of x= 13, 25,

50 mm and essentially zero mass turbulent transport between

x=102 mm to x=203 mm. The peak rates for x=13 mm and 25 mm

correspond to the location of the interface between the

inner jet and annular jet, and the location where the axial

velocities were negative, respectively. At these two

stations the turbulent mass rates have been under-predicted

which could be the results of the inlet condition or

velocity field. The discrepancy between the model

predictions and the measurement is more clear at 51 mm.
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There is considerable scatter in the measurements, however,

this location is near the upstream end of the central

recirculation region where the flow may not be axisymmetric.

Finally, the S-probability density function for

concentration at location x = 25 mm is calculated from the

known mean and variance. The results obtained are very

similar and in close agreement with the measured profiles

(Figure 4.54).

4.4.3 CONCLUSIONS

The main conclusions emerged from

discussion can be summarized as follows:

the preceding

i. The two algebraic flux model predictions are very

similar.

2. The effect of mean strain modelling on the pressure-

scalar gradient terms is not significant.

3. The transport model for scalar fluxes does not have any

advantage over the algebraic flux model.

4. The S-distribution is sufficient to give the correct

behaviour of the instantaneous scalar distribution.
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4.5 EXTENSION OF CONSTANTDENSITY MODELLING TO

VARIABLE DENSITY CALCULATIONS

The preceding models are extended to the variable-

density swirling flow conditions studied by Brum and

Samuelsen (1982). For this case, mean velocity and

turbulence intensity measurements were provided in the flow

field for the axial and tangential velocity components.

However, inlet velocity profiles were not measured.

Consequently, the axial velocity profile used to initiate

computations was regarded to an idealized, turbulent,

annular pipe flow distribution. The tangential mean velocity

component and turbulence quantities were taken from the

downstream measured profiles. The turbulence length scale at

inlet was assumed to be 1.6 mm. It may be argued that the

independent specification of the velocity distributions for

separate jet streams, the use of idealized profiles, or the

use of profile shapes from the measurements is not entirely

justifiable. Nevertheless, the predictions are still useful

in demonstrating some of the differences between the various

turbulence models. The injection velocity of propane/CO 2 was

estimated based upon the mass flow and nozzle area. It is

quite high (28.1 m/s) and such velocities would tend to

eliminate or change the position of the recirculation

region. Therefore, accurate inlet injection velocity

measurements are required to correctly predict the flow

field in the recirculation zone.
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4.5.1 k-_ MODELVERSUSALGEBRAIC STRESS MODEL

Computations are started from the swirler exit,

extending 300 mm downstream. A non-uniform grid of 51x50

with more nodes concentrated from the centerline to the

nozzle opening is used. Axial grid spacing starts with 0.5

mm at the inlet and expands geometrically to the exit. A

total of four different sets of calculations are performed

for the non-reacting case. The calculations and their

comparisons with measurement for Hij model given by

(2.13,16) are presented in Figures 4.55-4.58. The results of

the three ASM predictions of mean and turbulence fields are

very similar. In the outer flow region, the predicted axial

velocities are in agreement with the data; however, the

calculations reveal substantial differences between the

ASM's and the k-E model near the centerline. The differences

appear to be more significant for the present case than the

previous ones, because of the large impact on the primary

jet by the surrounding, swirling flow field. All the models

induce a recirculation zone along the symmetry axis but

maximum flow reversal velocities are smaller than the

measurement. A comparison between predicted and measured

swirl velocity profiles show that the algebraic stress model

promotes fairly rapid decay of the mean velocities relative

to the k-_ model. The use of the algebraic stress model,

which are destabilized with forced vortex flow, may not be

sound. The predicted turbulence profiles demonstrate a
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pronounced relaminarization effect, reducing the turbulence

intensities to unrealistically low values. The discrepancy

between the prediction and the measurement is probably

generated in part by incorrect inlet condition and to some

extent by using constant-density models for variable-density

flow. However, this is minor, since the variations in

density flow field are not significant enough to affect the

momentum field (air flow rate/CO z flow rate = 117.6). It is

recognized that by selecting only three examples, it is

difficult to generalize about the performance of these

models under all conditions. It should be noted that this

particular set of constants for the ASM cannot be lightly

dismissed. The unusual characteristics adopted by the

predictions prompts the inquiry as to the necessity of the

full convection and diffusion terms for strongly swirling

flow.

4.5.2 CONCLUSIONS

The previously discussed comparisons have demonstrated

the relative merits of various turbulence models for the

calculation of swirling, recirculating flows. It should be

noted that the effectiveness of turbulence model predictions

may be obscured to some extent by competing factors such as:

inlet and boundary conditions, oscillatory phenomena, and

numerical scheme. A significant contribution from any of the
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aforementioned factors tends to invalidate conclusions

regarding the superiority or inferiority of a given

turbulence model. Even the most advanced turbulence model

cannot compensate for inadequacy in this area.

Although little confidence is expressed in the ability

of zurrent generation turbulence models to simulate swirling

flow aerodynamics, the k-E model performs competitively.

None of the ASM's could satisfactorily predict the Reynolds

stresses, but alteration of the constants in pressure-strain

model is a viable option to improve the capability of the

ASM's for strongly swirling flows. The derivation and

validation of higher-order closure schemes hold the greatest

potential for turbulence model improvement for strongly

swirling flows. In view of the current numerics, the

additional computational time associated with higher order

closure, and the lack of a well validated turbulence model,

the k-c model remains the model of choice and should be used

to calculate reactive flows in practical combustors.
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Table 4.1 Values of constants in k-c model.

C eCI C o

0.09 1.44 1.92 1.0 1.3
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Table 4.2 Various models used in Reynolds stress

and algebraic stress closures

MODEL MODELNUMBER EQUATION
NUMBER

REDISTRIBUTION 1 (2.13)

2 (2.13) + (2.14)

3 (2.13) + (2.15)

(2.13) + (2.16)

DIFFUSION 5 (2.18)

6 (2.19)

DISSIPATION 7

8

(2.24)

(2.40)
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Table 4.3 Comparison of calculated and measured

reattachment lengths in mm.

MODELNUMBER

1 2 3 4

k-_ 258

ASM/E 245 242 227 246

ASM/MY 245 254 222 246

ASM/R 240 229 158 201

RSM 242

DATA 254
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Table 4.4 Various algebraic stress models (ASM)

used in this investigation

MODEL MODELNUMBER EQUATION
NUMBER

ASM/E 9 (2.28) + (model-l)

i0 (2.28) + (model-2)

ii (2.28) + (model-3)

12 (2.28) + (model-4)

ASM/MY 13 (2.31) + (model-l)

14 (2.31) + (model-2)

15 (2.31) + (model-3)

16 (2.31) + (model-4)

ASM/R 17 (2.34) + (model-l)

18 (2.34) + (model-2)

19 (2.34) + (model-3)

20 (2.34) + (model-4)
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Table 4.5 Various Reynolds stress models (RSM)

used in this investigation

MODEL MODELNUMBER EQUATION
NUMBER

high-Reynolds
number model

21 (2.7) + (model-l) +
(model-5) + (model-7)

22

23

(2.7) + (model-4) +
(model-5) + (model-7)

(2.7) + (model-4) +
(model-6) + (model-7)

low-Reynolds
number model

24 (E.I-E.6) + (model-4)
(model-5) + (model-8)

25 (E.I-E.6) + (model-4)
(model-6) + (model-8)
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Table 4.6 Values of constants used in Reynolds stress

and algebraic stress closures

MODEL CONSTANT ASSIGNED MODEL
VALUES NUMBER

REDISTRIBUTION C1 5.0 1

C1 3.7

C2 -0.09

C1 1.5

C2 0.6

C1 1.5

C2 0.5
4

DIFFUSION CS 0.22

CS 0. ii 6

DISSIPATION C 0.15

C_l 1.44

C_2 1.92
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Table 4.7 Comparison of calculated and measured locations

of the stagnation points along the centerline in mm

MODEL FORWARD REAR

k-E 31.4 147.9

ASM/MY 50.8 267

ASM/R 49.5 242.7

ASM/E 49.7 269

RSM 91 275

DATA 38 170
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Table 4.8 Various models used in flux transport

and algebraic flux models

MODEL MODELNUMBER EQUATION
NUMBER

REDISTRIBUTION 26 (2.22)

27 (2.22) + (2.23)

DIFFUSION 28 (2.20)

VARIANCE 29 (2.25)
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Table 4.9 Various flux transport and algebraic flux

models (AFM) used in this investigation

MODEL MODELNUMBER EQUATION
NUMBER

AFM/MY 30 (2.36) + (model-26)

31 (2.36) + (model-27)

AFM/LAUNDER 32 (2.38) + (model-26)

33 (2.38) + (model-27)

FLUX TRANSPORT 34
MODEL

35

(2.8) + (model-26)
+ (model-28)

(2.8) + (model-27)
+ (model-28)
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Table 4.10 Values of constants used in scalar flux models

MODEL CONSTANT ASSIGNED MODEL
VALUES NUMBER

REDISTRIBUTION CI0 3.63 26

CI0 3.0

C20 0.33
27

DIFFUSION Cso 0.ii 28

VARIANCE CD02 1.3 29

C02 1.5

120



RII

,Ri 2 "_.5deg

TO END OF

TEST SECTION

(A)

_.Ril

S

\ TO END OF

TEST SECTION

(B)

SWlRLER

DIMENSION R i t R I2 Ra Ro S L

LENGTH (ram) 12.5 15.3 29.5 61.0 51 1016

LENGTH (ran,) 0.492 0.601 1.162 2.402 2.0 40

RADIUS RATIO,fIR o 0.205 0.251 0484 1.0 -- _

Figure 4.1 Sketch of inlet and test section A: Johnson and

Bennett (1981), B: Roback and Johnson (1983)

121



a) SWIRLING FLOW

WA_ E

RE G_ON

LARGE EDDY SWEAR

REG,ON BElWEEN JETS

I

ANNUL&R JET

INNER JET

ANNULAR

REC.IRCULATION

REGION

Z ai
REAX"I"ACMMENT REGION

FULLY

--'- DEVELOPED

DUC'r FLOW

b) NONSWIRLING FLOW

wAKE

REGION

SHEAR REGION

BETWEEN JETS
FULLY

DEVELOPED

DUC'T
FLOW

I
ANNULAR

RECIR3ULATIDN

REGION

Figure 4.2 Sketches of flow regions for swirling and

non-swirling flow conditions A: Johnson and

Bennett (1981), B: Roback and Johnson (1983)

122



D_

O _

C

X

mu

O w

Figure 4.4

RIRO
O 0 0

= ,.L_ . T° t_ °

i

'_1 I_P w,b,

I

!

.I

o
O,
fl)

i-f

Comparison of predicted & measured axial

velocity profile using k-_ model

(Johnson and Berunett (1981))

124



SWIRL"---'l X

INJECCO_IDH_N

//////_

z.. 50 "

DILUTIDk _ __._.I'--D.D81_THICK

_O.D85I 15 IR/S REFVEL

GAP

15.4 H/$
.... ' ..... L

I

_8.0

I
!
!

I

I
T

ALL DIMENSIONSIk CK

Figure 4.3 Sketch of inlet and test section

(Brum & Samuelsen (1982))

123



c_ _ QUALRY

D

Iii

im

D

0

I I

I-
-, Y" _ M_

_' \. ,_
ky,

! _- 1Tt'P Iq_ i

\, /,,"
\. /

1- I_? I'I"

_. _,_S._..//"

,/

I

//
./

! ""o_ •

a

If) I

o
11) _

Figure 4.5 Comparison of predicted & measured turbulent

kinetic energy profile using k-_ model

(Johnson and Bennett (1981))

125



D

i

& a

I

i I
I

i

L
V

i

I

j N_ 6U_ _X

Mk _gk. _z

i

o
m

m
fD

rr

Figure 4.6 Comparison of predicted & measured turbulent

shear stress profile using k-_ model

(Johnson and Bennett (1981))

].26



+

f%

W

Z
C)
H
t--
¢..)
H

b.I
n,,

eeem

v

X

O4

I,

CS/W) )d.lOO'I3A 3Nil _31N33

Figure 4.7 Comparison of predicted & measured centerline

axial velocity profile

(Johnson and Bennett (1981))

127



o

o

c
I

m

D

o

y+....• ; I I

I I

I

J

• • , • •

_" ' • gD

"o • gD

°° • •

I

Figure 4.8 Comparison of measurements with mean axial

velocity calculations using Nij from eq. (2.13)
(Johnson and Bennett (1981))

128



o

_m

O

&n

O

=.
w

o

&n

O

O

_/_ f.
'_ |/ i! '

.,v,./"

If •

l- 1_? rl'

_ 2
,.,,..._\ _:._.

• . • #,,".% /:.:,,,.-
_:::,',-,c.__.".,.-

I ,- .,o.,,,__-

• /.-

i _/..t •

!

¥_- "UlnC: n_ • • •

oIo . O O

Figure 4.9 Comparison of measurements with k calculations

using Nil from eq. (2.13)
(Johnson and Bennett (1981))

129



J

o

o

!
0

D

o

w

t

O

!

O

O

I

:: 'I

s " _!i

I NI_ 6U L _X

i

__.

m

Figure 4.10
---r

Comparison of measurements with uv

calculations using _ij(from eq. (2.13)(Johnson and Bennett 1981))

130



o

o

1

O

.=
w

" I •

i

'_° ° "o •

j dN 6N ; =_

,..

• • ."

'o •, o

• • • • , .

_k IsUb _

• • • • o qeol I iio

Figure 4.11 Comparison of measurements with u_

calculations using _i" from eq. (2.13)

(Johnson and Bennett J(1981))

131



&n

o

o

=.
w

o

.... ........ .."

• : I •

Y __._._
.,¢

i"

I

I •

WW I'_6 _X

WIW "_Ut. _X

..... °.°.° . o.° °°°

Figure 4.12 Comparison of measurements with _-

calculations using _ij from eq. (2.13)
(Johnson and Bennett (1981))

132



O

-- o

.=
w

Tn

q_•

. _
0'*"71r • " * •

• • • • • • "

i • b

i N_ Vl_z _X

Mk NU _' _

s. • .

Figure 4.13 Comparison of measurements with _

calculations using _i" from eq. (2.13)
(Johnson and Bennett J(1981))

133



I i : : •

j rl
f,

.-g

i _" " .r-

•
• , "

,'!

2'1

, 0
,, ,,L

• .,,._=. e_. _ .

.°-.

_°i. #"

//.'"

," • '.

t

i _

/

_ __
__ .... I"'_

i

Figure 4.14 Comparison of measurements with U and uv'

calculations using ni_
(a) eqs. (2.13,2.14)/ Tb Fij'' + _i_'_13,2. ,) eqs. 15)
(c)eqs. (2.13,2.16) (Johnson and Bennett (1981))

134



v

I ' I "

2, ,,/'\

,..1 ii ." i _ '_.= "/ / _' r" • ,,=
._. _ .'/ ,' \;, ° ,, / I.-

- • / Z l" • , / I'=

,, / _'_

\ / _

l"

I °

"/ _.° r

0

10

i"'''"

• , I _11

IQ, * , .I

I

-_- I/- "\'" _-
• oF-- =

'l
0

t •

ml

,,*

.-,:.. -.,

J"'" "' " " " l

[

! # _ '_ '
IC

Figure 4.15 Comparison of measurements with _/_and _v/_

calculations using 9i. _i_hs+(a) eqs. (2.13,2.14), "1 (b (:E2'!'_3,2.15),

(C) eqs. (2.13,2.16) (Johnson & Bennett (1981))

135



0"

0 ¸

:D

O--

X

3

&

0--

" I ' 0 -

"_. .,

$

; :
t !

1

$

' ,- ..... "° -'° .....

1

--.°_

• ...," /

x
.,z

Figure 4.16 Comparison of the distributions of numerical

viscosity with turbulent viscosities at

different locations along combustor

136



Figure 4.17

= i

o-

RIRO

" _ _r, "!= .I,_ _, tc_ . "-

. I f.

i'" "'?.'_. • "

Y- _.5_ M,w

t• I

Comparison of hybrid differencing scheme

with q_adratic upwind differencing scheme on
mean axial velocity

137



C

A

&a

O O

_.a_ _ I IT °

o o g

.... Yw ?n_ _w

• i

Figure 4.18 Comparison of measurements with mean axial

velocity calculations using two turbulent
diffusion models (2.18,2.19)

138



o
&a
v

o _ o I

I_ i_

]

l

I

I

I

I

i

• J
t

Figure 4.19 Comparison of measurements with uv

calculations using two turbulent diffusion

models (2.18,2.19)

139



0 0 0 J
t
r_ , I_.. I_ I_

o_
lw c:, M_'

[ "-"

_a

i

_{i !c? M,"

. -_ |

I

[;'''" . _u'_ M_• "-..-°" . i j

I

Iv _n c N.

I

i

Figure 4.20 Comparison of measurements with _

calculations using two turbulent diffusion

models (2.18,2.19)

140



O"

9 = -,

o ,._,_.. i_ iT o

Y. _t w_

i •

y. vc:_ wfd

,t. _i'1_ MM

oo •

_ I a al

t

I

• I

e_

Figure 4.21 Comparison of measurements with

calculations using two turbulent diffusion

models (2.18,2.19)

141



-4

c

v

m--

+l 0t
_ 6i• ,,L. .. z _ I_.

i •

/

i ''G "M . -'-"

I +.

I

• i
+

-.,,_! m _ +=

• • I 11

r"

Xm 2_¼ MM

• m ._

I

Figure 4.22 Comparison of measurements with mean axial

velocity calculations using Reynolds stress

closure and two different Nij models
(a) eq. (2.13) , (b) esq. (2.13,2.16)

142



Figure 4.23

.0 -

o_

v

;];I
R/RO'

Q 0

Y. _cu "M •

Zm "_n5 MM

i

• i
I

m

Comparison of measurements with u--_

calculations using Reynolds stress

closure and two different _i models
(a) eq. (2.13), (b) esq. (2 .1_, 2.16)

143



Figure 4.24

A

qA/

j ° . _ /

J

L

Comparison of measurements with

calculations using Reynolds stress

closure and two different _ models
(a) eq. (2.13) , (b) esq. (2._3,2.16)

144



_.I_ ,_ I_ I_
I

• _\ .-°" o''"

o"

"'_t •

L'" _'

i

;-

I_ c.n
v

• )
t

Figure 4.25 Comparison of measurements with

calculations using Reynolds stress

closure and two different _i" models

(a) eq. (2.13), (b) esq. (2. _3 ,2.16)

145



+  ,01
O O

_o k_., t+ ,+ o

I

i m, _"

! (o

i °° /_° : '
"il

+ "'+_m-

I . ::+_++'% "

f

__.

I

Figure 4.26 Comparison of measurements with mean

axial velocity calculations

(Johnson & Bennett (1981) ,k-_, ASM, RSM)

146



° ° o _Ii
I_

"I_"_/-'tM ._(

iI "

c

''..,o ,\

;'c" !\o

• • ee '_%. ."

°'_
I

r

Figure 4.27 Comparison of measurements with k calculations

(Johnson & Bennett (1981), k-c, ASM, RSM)

147



Figure 4.28
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CHAPTER5

REACTING FLOWCALCULATIONS

This chapter presents the results of the reacting flow

calculations using the constant-density turbulence models

recommended in the previous chapter. There is still the

basic question of whether empirical equations or models

developed for constant density, non-reacting flows can be

applied without modification to turbulent combustion. Models

are generally required for quantities such as the turbulent

eddy viscosity and the scalar dissipation function which

plays an important part in turbulent chemistry (Bray, 1980).

There is a widely held belief that the use of Favre

averaging automatically takes account of all the effects of

density fluctuations and chemical reactions, and, therefore,

allows empiricism from constant-density flows to be

exploited without change. While this may indeed be true in

some cases, it can be justified only by actual comparison

with experiments.

Another fundamental question in the modelling of

reacting flows is concerned with the effects of turbulence-

induced fluctuations on time-averaged reaction rate. An

essentail feature of many of the practical problems is that

the rate of chemical reaction is limited by the rate of
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mixing of reactants. For non-premixed system, and in the

limit of fast chemistry, the molecular species are

instantaneously related to the conserved scalar and the

statistics of all thermodynamics variables can be determined

from a sufficient knowledge of the statistics of that scalar

(Bilger, 1976). As a result, the need to evaluate mean

reaction rate is obviated. However, the estimation of

unburnt fuel and the formation of CO require consideration

of finite-rate reactions. On the other hand, premixed

combustion, in contrast to non-premixed combustion, requires

the evaluation of mean reaction rate because the mixing is

accomplished before reaction begins. Based on these

differences, the results to be presented are divided into

non-premixed and premixed combustion. Under non-premixed

combustion, both results of fast and finite rate chemistry

models are discussed for flows with and without swirl.

In view of turbulence/chemistry modelling, it would be

very usefuel if isothermal and reacting flow experiments

could be carried out in the same apparatus so that a natural

progression in understanding could be followed. Generally,

because of experimental problems, such progression has not

been done. Therefore, effort is made to select the test

cases which are similar to the previous isothermal flow

cases in terms of the geometry, working fluids, boundary

conditions and measurements technique. In addition, all data

sets have to meet the criteria for acceptable measurements
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in terms of adequate experimental facility, appropriate

instrumentation and agreement with generally accepted flow

trends. In view of the above considerations the following

three experiments are chosen as the test cases:

i. Lewis and Smoot (1981)

The configuration of this experiment is very close to the

configuration of Johnson and Bennet (1981).

2. Brum and Samuelsen (1982)

This experiment is used to simulate the dilute swirl-

stabilized combustor. Since molecular weights of CO 2 and

C3H 8 are identical, therefore, by comparing with the non-

reacting results, the effect of heat release on flow field

can be assessed.

3. McDannel et al. (1982)

This experiment is used to simulate an axisymmetric opposed

reacting jet combustor.

Again, the shortcoming of these experiments is the lack of

well-defined inlet boundary conditions. Nevertheles, the

calculations are quite beneficial because they help to

illustrate the differences between the various models and

their ability to calculate reacting flows.
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5.1 NON-PREMIXEDCOMBUSTION

5.1.1 Coaxial Non-swirling Jets

In the this study, the geometry of Lewis and Smoot

(1981), simulating an industrial furnance, is selected. In

this experiment, coaxial streams of fuel (town gas ) and air

are injected into a suddenly-expanded combustion chamber

(Figure 5.1). The flame is stabilized at the dividing lip

between the two streams. Measurements have been made of the

time mean mixture fraction and species concentration. The

parameters and test conditions for this combustor are

summarized in Table 5.1.

The computations for this case are made assumption a

two-dimensional formulation and a standard k-_ model. This

model is previously recommended for non-swirling, constant-

density flows. Two modelling approaches have been used for

the combustion process. At one condition, chemical kinetics

are assumed to be rate controlling and at another, turbulent

mixing is treated in detail, but infinite rate chemistry is

assumed. A non-uniform grid of 61x47 is used in the

computations. Uniform axial velocity profiles are prescribed

for the fuel and air stream, respectively. The inlet

turbulence intensities for air and fuel are given in the

measurements as 6% and the length scales are assumed to be

5.7 mm for the air and 1.6 mm for the fuel jet,

respectively. Along the adiabatic walls, standard wall

function treatment is employed. The fuel mixture fraction is
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set equal to one in the fuel stream and zero elsewhere.

Because of the uniform distribution of mixture fraction in

each of the streams, the fluctuation values are zero in the

inlet plane.

The predictions of the mixture fraction, unburnt fuel

and carbon monoxide using fast and finite-rate chemistry

models are presented in Figure 5.2. The rate constants used

are given in Table 5.2. It can be seen that the results are

qualitatively correct. Both models over-predict the mixture

fraction near the centerline in the developing region;

however, the finite-rate chemistry model seems to be able to

reproduce the physics better than the fast-chemistry model.

A turbulent Prandtl number of 0.9 is used to obtain the

results shown. In the fully developed region, the agreement

is quite good. This suggests that a good prediction of

mixture fraction in the developing region requires a lower

turbulent Prandtl number. In the region near the inlet, the

convection is dominant and the change of the Prandtl number

does not have any effect on the prediction of mean mixture

fraction. In the developed region, since the absolute levels

of mixture fraction are low, the difference caused by

changing the Prandtl number will not be significant. The

middle zone is the region of very steep variation in mixture

fraction and a lower Prandtl number will undoubtedly improve

the prediction. Comparison of predicted and measured values

of unburnt fuel is similar to that of mixture fraction. The
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prediction is qualitatively correct at all planes; however,

the model has over-estimated the unburnt fuel in the middle

region indicating the slow reaction rate. The predicted CO

levels are fair in most of the locations but beyond x =785

mm, they are significantly lower than the data. The

predicted results shown in Figure 5.2 are based on the

assumption of equal diffusivity for all species, enthalpy,

and the mixutre fraction. It is obvious that the values of

the turbulent Prandtl number are not necessarily the same

for all species and may not even be uniform over the whole

flow field. Therefore, further investigation regarding the

scalar transport model is required.

The contour plots of temperature, mixture fraction,

unburnt fuel, carbon dioxide and carbon monoxide inside the

combustor are shown in Figures 5.3-5.7. The flame zone is

clearly delineated by the temperature contours. The

comparison clearly shows the big difference between the two

combustion models, and illustrates the strong interactions

between flow and chemical reactions for the finite-rate

chemistry model and the relatively weak interactions shown

in the fast-chemistry model (Figure 5.3). Furthermore, a

sharp temperature gradient seen near the edge of the flame

is a direct result of an insufficient diffusion along the

radial direction. No doubt, a smaller Prandtl number will

help. However, a more realistic approach would be to abandon

the constant Prandtl number assumption and proceed to
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evaluate the turbulent fluxes by their own transport

equations. The carbon monoxide profile along the centerline

behaves correctly, attaining a maximum when reaction (2.63)

and (2.64) are equally competing, and subsequently falling

off as the combustion products tend to their equilibrium. In

general, the finite-rate chemistry model seems to give more

realistic results and could be easily adopted for non-

swirling combustor flow calculations.

The cold flow results are also shown in Figures 5.8-5.9

for comparison, and serve to show the effect of heat release

on the mean and turbulence field. The recirculation zone in

the case of reaction is: (i) more intense (higher negative

velocities), and (2) more compact (shorter). Expansion

effect due to heat release is amply demonstrated by the

substantially lower mean axial velocity (U) in the developed

region of the flow. On the other hand, turbulence activities

as measured by k and uv are greatly reduced by heat release.

One surprising result of the present study is given by the

calculation of the fast chemistry model. Essentially, a

similar behavior of U, k and _ are obtained in the reacting

zone in comparison with the isothermal flow calculations.

One reason for this could be due in part to unrealistic

simulation of heat release effects on density fluctuations

in the transport equations. It also leads to prediction of

double peaks behavior for the mean axial velocity

immediately after the inlet plane which is not physically
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correct. Such a behavior might be attributed to the

predicted scalar distribution near the inlet plane,

especially in the wake region created at the dividing lip

between the two streams. In a mixing controlled combustiom

model, the hydrodynamic field is highly sensitive to the

mixture fraction prediction. It is the only parameter that

determines the amount of heat release. An incorrect

prediction of mixture fraction results in incorrect

temperature and density fields. Since density is strongly

coupled to the flow field, an incorrect density changes the

flow field completely. On the other hand, in finite rate

chemistry model, the chemical heat release is determined by

transport of total enthalpy and unburnt fuel which is a more

realistic approach. It must be stated that neither models

can provide an entirely satisfactory description of the

reaction zone, however, the two-step reaction scheme has

more flexibility and greater potential for application in

gas turbine combustors. It needs to be further validated

with simple flames to establish rate constants. In addition

to Favre-averaging technique, the turbulence model has to

include the heat release effect on the turbulence field in

the transport equations of turbulent kinetic energy and

scalar fluctuation too (Dibble et al. 1985).
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5.1.2 The Dilute Swirl-Stabilized Model Combustor

The flow geometry in this case is identical to that

shown in Figure 4.3. The propane-fueled combustor is

operated at atmospheric pressure with an overall equivalence

ratio of 0.2 and a bulk reference velocity of 15 m/s. The

fuel velocity based on the nozzle area and mass flow is 28.1

m/s which is high and has a tremendous effect on the

prediction of the central recirculation zone.

Computations are made over a 61x47 non-uniform grid

using a standard k-E and an equilibrium ASM model. The rate

constants used in this calculation are given in Table 5.2

and Prandtl/Schmidt number is taken to be 0.9. Predicted

velocity results from the k-E and the equilibrium ASM models

for isothermal and reacting flows are shown in Figures 5.10-

5.12. The effect of swirl is pronounced. It produces a large

recirculating region near the axis that sweeps back burnt

gas products to ignite the incoming reactants. A transition

occurred in the form of the recirculation zone which becomes

shorter and wider. Beyond the recirculation region, the mean

axial velocity profiles predicted by the ASM/E are in better

agreement with data than those predicted by the k-_ model.

However, both models failed to predict the correct location

and strength of the recirculation region along the

centerline. This result is attributed partly to the high

vertical component of inlet fuel velocity used which tends

to push the central recirculation region towards the
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combustor wall. The predicted maximum flow reversal velocity

is approximately -5.75 m/s, while the corresponding measured

value is about -7.95 m/s. Furthermore, the location of the

maximum negative velocity is predicted closer to the swirler

exit compared to the data. In the developing region, the

ASM/E has under-predicted the turbulent intensity,

especially in the central recirculation zone; however, in

the fully developed region the results are relatively better

(Figure 5.11). It is also observed that, at downstream

locations along the centerline, the experimental value of

w_is greater than u/_. These excessive levels as mentioned

by Brum and Samuelsen (1982) are probably produced by a

spiralling action of the vortex center about the stationary

laser velocimeter probe which can be considered as an

experimental error. The discrepancy between prediction and

measurement can be attributed to: (i) inaccurate inlet

conditions, (2) the turbulence model constants, (3)

experimental error and (4) the effect of heat release on the

turbulence field which needs to be accounted for ( Dibble et

al. , 1985).

The effect of reaction is observed to double the mean

axial velocity and raise the turbulence intensity in the

reacting zone (Figure 5.10). However, the increase of

tangential velocity near the centerline, which also stems

from heat release, has not been correctly predicted. Unlike

the previous test case, the fast and finite-rate chemistry
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results are essentially identical. The reason is the

enhanced mixing due to swirl. This increased mixing activity

promotes chemical reactions between fuel and oxidant, and

the net result is one of very fast reaction rates. The

recirculation zone in the case of reaction is wider (16 mm)

and the length of the recirculation region is shorter (38

mm). These changes are the results of gases expanding in the

shear layer at the boundary of the recirculation zone. This

creates a region of low pressure which tends to draw

swirling air towards the centerline and close the

recirculation zone (Brum and Samuelsen , 1982).

Finally, contours of unburnt fuel, temperature, mass

fraction and carbon dioxide are shown in Figures 5.13-5.16.

There is a strong gradient in fuel concentration in the

radial direction close to the inlet, while the profile

becomes more uniform as the outlet is approached. The

temperature and mixture fraction distributions found by fast

and finite rate chemistry models are very similar. However,

the fast chemistry model shows a longer reacting zone. Both

models predict the sharp temperature gradients near the

perimeter where dilute air enters. This apparent suppression

of radial transport could be due in part to the use of an

isotropic diffusion model, unrealistic Prandtl/Schmidt

number, and unrealistic simulation of heat release effects

on density fluctuations in the transport equations. As

mentioned before, the Prandtl number is not a significant
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factor in the fully developed region because the flow is

convection dominated and the axial velocity is quite

uniform. However, in the developing region, the isotropic

diffusion model is not valid and more realistic approach is

to evaluate the turbulent fluxes by their respective

transport equations.

5.2 PREMIXED COMBUSTION

Another test case selected for evaluating the kinetic

scheme is the recirculating flow in an axisymmetric,

opposed-reacting-jet combustor shown schematically in Figure

(5.17). The incoming mainstream of premixed propane and air

(Um=7.5 m/s) is opposed by a high-velocity (Uj=I35 m/s)

premixed jet positioned along the longitudinal axis with an

equivalence ratio of one. The jet creates a zone of

recirculating flow necessary to stabilize the reaction.

Computations are made over a 49x25 non-uniform grid using a

k-_ model and the results compared to species concentration

and temperature measurements reported by McDannel et al.

(1982) and velocity data provided by Samuelsen (1986). The

inlet turbulence intensity is assumed to be uniform with a

value of 0.005 and the inlet length scale is assumed to be

constant with a value of 2.5 mm. Adiabatic boundary

conditions along the walls are also applied. Again, the rate

constants listed in Table 5.2 are used.
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The difficulty of modelling jets in a co-flowing stream

is amply demonstrated by the work of Launder et al. (1973).

Their results show that, of the four models, ranging from

mixing-length to two-equation models, used to calculate jets

in a co-flowing stream, none is capable of predicting the

decay of the jet centerline velocity correctly. So and Hwang

(1986) point out that there are certain inherent

deficiencies in the models and these lead to a slower growth

for the jet. A model for the developed region of the jet is

put forward by So and Hwang (1986) and their calculations

are in good agreement with measurements. For opposed-jets in

a moving stream, the modelling difficulties are further

compounded by the presence of a stagnation point, and the

very rapid decay of the jet centerline velocity. In other

words, the models may not be able to mimic the highly

dissipative phenomenon occurring in the region downstream of

the jet exit. In view of this, the calculated isothermal

flow field of the opposed-jet experiment could not be

expected to be correct. Therefore, the present comparison

with measurements should be judged bearing in mind the

inadequacy of the turbulence model and the inaccuracy of the

isothermal flow field.

A comparison of the calculated jet centerline velocity

decay with the hot- and cold-flow measurements is shown in

Figure 5.18. As expected, the models under-predict the

velocity decay for cold flow and the discrepancy becomes
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more pronounce for the hot flow. The measurements show that

the jet decays immediately downstream of the jet exit, while

the models give a very small potential core region for the

cold-flow jet and a much larger potential core for the hot-

flow jet. The location of the stagnation point is also

incorrectly predicted, and the result shows that the

predicted hot-flow stagnation point is in closer agreement

with the cold-flow measurement. Experimental measurements

show that the hot-flow centerline velocity is always higher

than the cold-flow centerline velocity. This is a

consequence of flow expansion due to heat release from

chemical reaction. The models cannot reproduce this behavior

correctly because they over-predict the centerline velocity

decay in the region 1.7<x/D<2.6 for the hot-flow and under-

predict the decay in the same region for the cold-flow. As

for the region between the stagnation point and the jet

exit, the k-c model completely fails to reproduce the flow

behavior. In the region downstream of the stagnation point,

the agreement is much improved. Therefore, this points to

another deficiency of the k-E model; namely, it cannot

properly account for the rapid dissipative phenomenon seen

in the present test case.

The predicted mean axial velocity profiles for hot and

cold flows are presented in Figure 5.19. Shown for

comparison are the hot- and cold-flow measurements obtained

by Samuelsen (1986) at one x location. The expansion effect
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due to heat release is clearly apparent. The calculated

recirculation zone in the case of reaction is (i) radially

wider, (2) axially shorter and (3) more intense, which means

higher negative velocities. This is in stark contrast to the

measured profiles which show a radially wider recirculation

zone for the cold flow. Reason for this could be traced to

the inadequacy of the k-E model and perhaps, partially, to

the combustion model. The effect of reaction is also to

increase the turbulent kinetic energy and shear stress

considerably (Figures 5.19-5.20). In both cases, the

stagnation point is incorrectly located due to deficiencies

in the underlying turbulence model.

Not only does the turbulence model affect the flow

field calculation, it also affects the temperature and

species concentration field. A comparison of the temperature

and carbon monoxide (CO) distribution for stoichiometric

(4=1) combustion of propane and air is shown in Figures

5.21-5.22. The flame region is indicated clearly by the

temperature contours, but local agreement is not attained.

As discussed before, the stagnation point error is clearly

evident and so are the under-predicted axial turbulent

exchange across the stagnation point and the deficient

radial exchange.
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5.3 CONCLUSIONS

The main conclusions emerged from this study can be

summarized as follows.

i. Two-step reaction scheme performed better than fast

chemistry model in predicting mean mixture fraction.

2. Satisfactory prediction of mean mixture fraction can be

obtained using a turbulent Prandtl number that is constant

over the flow field.

3. Finite-rate chemistry models are preferred over fast-

chemistry models for determining the combustion effects in

combustors. However, it needs to be further tested with

simple cases to establish rate constants so that major

species can be accurately predicted.

4. The constant-density k-_ turbulence model provides a

satisfactory representation of the aerodynamics in most

practical combustor flows, except in the case of jet-

stabilized combustor flow. The reason is the inability of

the k-E model to replicate the highly dissipative phenomenon

found in such flows.

5. Some improvement in complex swirling flow predictions

could be obtained by using an algebraic stress model.

6. The combustion model must provide a realistic

representation of heat release behavior which has the

substantive effect on the flow structure.
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7. In addition to Favre-averaging, the turbulence model

should include some heat release effect on the turbulence

field. This could be accounted for in the transport

equations of turbulent kinetic energy and its dissipation

and the scalar fluctuations.
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TABLE 5.1 Combustor parameters and test conditions

Primary Gas

Temperature (K)
Mass flow rate (Kg/s)
Velocity (m/s)
Composition (molar %):

286

0.0031

21.7

CH 4

C2H 6

N 2

CO 2

H 2

88.53%

7.44%

2.55%

1.39%

0.O9%

Secondary Air

Temperature (K)

Mass flow rate (Kg/s)

Velocity (m/s)

Composition (molar %):

589

0.0362

34.7

N 2

02
Ar

78.3

2O.8

0.9
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TABLE 5.2 Model constants for mean reaction rates

Town Gas Propane

CRI = 3. 3.

CR2 = 4. 4.

K1 = 3.3 x 1014 5.57 x 108

K2 = 6.0 x 108 5.42 x 109

EI/R = 27000 15104

E2/R = 12500 15098

a = 1.5 1.75

b = 0.5 0.i

c = 1.0 1.65

a' = 2.0 2.0

b' = 1.0 1.0

c' = 1.0 0.5

d' = 0.0 0.5
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CHAPTER 6

CONCLUDING REMARKS AND RECOMMENDATIONS

Important specific conclusions for each of the sections

in chapters 4 and 5 are provided at the end of each section.

This chapter, therefore, presents general conclusions of

this study and makes recommendations for further work.

6.1 CONCLUSIONS

i. As far as the mean field prediction is concerned, k-_

closure performs just as well as any ASM or RSM in the

calculation of non-swirling combustor flows.

2. The k-_ model gives good correlation for the developing

region of complex swirling flows. However, for the far-field

region the ASM provides a better prediction.

3. For swirling combustor flows, the ASM's and the full

Reynolds stress models do a better job of predicting

tangential velocities, while the k-c model gives a good

description of the centerline recirculation zone although

the predictions are subject to uncertainties from the inlet

boundary conditions.
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4. Low-Reynolds-number model provides a better estimate of

the mean and turbulence quantities in the near wall region.

This model also predicts the corner recirculation zone which

is observed experimentally and missed completely by all

high-Reynolds-number models.

5. Models employing transport equations for the individual

turbulent stress and fluxes components simulate the

turbulent processes more realistically and are therefore

potentially more general compared to the simpler models.

However, they are not thoroughly tested and are

computationally more expensive. Hence, at the present state

of development, they are not very suitable for practical

applications. They are important, however, as a starting

point for deriving algebraic expressions for the turbulent

stresses and fluxes. It seems that such expressions used in

conjunction with the k and c equations are sufficient for

most engineering problems.

6. It should be noted that the effectiveness of turbulence

model predictions could be obscured to some extent by

competing factors --- boundary conditions, oscillatory

phenomena and numerical diffusion. A significant

contribution from any of the aforementioned factors tends to

invalidate conclusions regarding the superiority or
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inferiority of a given turbulence model. Numerical diffusion

is a complex function of mesh size and cell aspect ratio.

Inlet and boundary conditions are also of importance in

strongly swirling flows. The turbulence model cannot

compensate for inadequacy in this area. It is apparent that

turbulence model validation must be preceeded by (I)

appropriately configured and detailed

studies, and (2) elimination of

considerations.

experimental case

false diffusion

7. Favre-averaging technique is a reasonable approach for

isothermal, variable density flows. However, for reacting

flows, the turbulence model should also include the effects

of chemical heat release on the Reynolds stress/flux

components.

8. Two-step reaction scheme shows promise for application in

gas turbine combustors and is preferred over fast-chemistry

model for determining the combustion effects in combustors.

However, they have to be further validated with simple

flames to establish model constants and rate constants, so

that the major species can be accurately predicted.
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6.2 RECOMMENDATIONS

I. The low-Reynolds-number closure is found to provide a

better estimate of the mean and the Reynolds stresses near

the wall region. It is appropriate to apply a similar

approach to develop a low-Reynolds-number model for the

scalar transport equations too.

2. Although some of the models described in this review and

in particular the k-c model, have shown to work well in many

situations, there is much room for further developments. The

E-equation in its present form appears not to be

sufficiently universal and should be improved. As observed

by many, this equation is the Achilles heel for most models.

Ideas to use several length-scale equations for different

directions or different processes are promising (Hanjalic et

al. 1979) and should be developed further.

3. The model assumptions for the

pressure-scalr gradient correlations

satisfactory and need improvement.

pressure-strain and

are also not very

Proposals for the

behavior of Hij,l in inhomogeneous flows have only gone

further than that of Rotta (1951) by including further terms

in a series expansion about the isotropic homogeneous state

(Lumely and Khaheh-Nouri, 1974). However, optimization of

the coefficients of the terms in the expansion on the basis
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of available experimental data is a very difficult task

indeed. It seems unlikely that any serious proposal for

will be made in the near future and that emphasis
Hij ,i

should be placed on developing a better approximation for

Hij,2"

4. The derivation and validation of higher-order closure

schemes holds the greatest potential for turbulence model

improvement for strongly swirling flows.

5. The difficulty in clearly demonstrating calculations free

of numerical errors has restricted the testing of higher-

order closures in recirculating flows. Efforts to find a

stable and higher order (order of terms retained in an

equivalent Taylor series expansion) differencing scheme that

can eleminate numerical diffusion should continue. This is

especilly important in the case of reacting flows because of

the coupled non-linearities which exist between the chemical

and fluid mechanical processes.

6. The correct solution of the potential core region is very

important in analyzing the chemical heat release effects at

the early stages of the reaction and obtaining the correct

behavior of axial variations of turbulent velocity/scalar

fluctuations in the diffusion flames.
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7. An intensive submodel validation and development efforts,

especially for the algebraic stress/flux model, two-step and

four-step kinetic schemes, and two-step kinetic scheme in

conjunction with PDF approach should be continued.

8. Unfortunately, in many instances there is a lack of

quality data relevant to gas turbine combustion. Many

modelling assumptions are similar to the constant-density,

Reynods-stress closure. Therefore, further experiments with

more emphasis on turbulent scalar fluxes and density

correlations are needed to support or to improve these

assumptions. In addition, more experiments with different

fuels are required to assess the idealized density-mixture

fraction relation and its application to turbulence

modelling of diffusion flames.

225



REFERENCES

Bilger, R. W. (1975) A note on Favre averaging in variable
density flows. Combustion sci. and Technol. 1_!1,215-217.

Bilger, R. W. (1976) Turbulent jet diffusion flames. Progr.

Enerqy Combust. Sci !,87-109.

Bilger, R. W. (1977) Comment on structure of turbulent shear

flows. AIAA J. 15 , 1056.

Bilger, R. W. (1978) Reaction rates in diffusion flames.

Combust. Flame 30, 277.

Bilger, R. W. (1979)

Astronautica 6 , 987-989.

discussion contribution. Acta

Bilger, R. W. (1980) Turbulent flows with nonpremixed

reactants, in Topics in Applied Physics: Turbulent Reacting

Flows (Edited bt Libby, P.A. and Williams,F.A.), pp. 65-113.

Springer - Vergal, New York.

Borghi, R. (1974) Chemical reactions calculations on

turbulent flows: Application to co-containing turbojet

plume. Adv. Geophsics 18B , 349-365.

Bradshaw, P. , Ferriss, D.H. and Atwell, N.P. (1967)

Calculation of boundary layer development using the

turbulent energy equation. J. Fluid Mech. 28, p.593.

Bradshaw, P. , Dean, R.C. and McEligot, D.M. (1974)

Calculations of interacting turbulent shear layer-duct flow.

ASME J. Fluids Eng. 9_55, p. 214.

Bray, K. N. C. (1980) Turbulent flows with premixed

reactants, in Topyics in Applied Physics: Turbulent Reacting

Flows (Edited bt Libby, P.A. and Williams,F.A.), pp. 65-113.

Springer - Vergal, New York.

Bray, K. N. C. and Moss, J. B. (1977) A unified statistical

model of the premixed turbulent flame. Acta Astronaut 4,p.
291.

Brum, R.D. and Samuelsen, G.S. (1982) Assessment of a dilute

swirl combustor as a bench scale, complex flow test bed for

modeling, diagnostics, and fuels effects studies. AIAA-82-

1263.

226



Butler, T.D. and O'Rourke, P.J. (1977) A numerical method
for two-dimensional unsteady reacting flows. Sixteen

(International) Symposium On Combustion, pp. 1503-1514.

Chien, K. Y. (1980) Predictions of channel and boundary

layer flows with a low-Reynolds-number two-equation model of
turbulence. AIAA-80-0134.

Chou, P. Y. (1945) On velocity correlations and the solution

of the equations of turbulent fluctuations. Quart. J. Appl.

Mth. 3, 38-54.

Daly, B. J. and Harlow, F. H. (1970) Transport equations of

turbulence. Phys. Fluids 1_/3 , 2634-2649.

de Vahl Davis, G. and Mallinson, G. D. (1972) False

Diffusion in Numerical Fluid Mechanics. Univ. of New South

Wales, School of Mech. and Ind. Eng. Rept. 1972/FMT/I.

Deardorf, J. W. (1973) The use of subgrid

equations in a three-dimensional model of

turbulence. Trans. ASME, J. Fluid Eng. , 429-438.

transport

atmospheric

Deardorf, J. W. (1974) Three-dimensional numerical study of

turbulence in an entraining mixed layer. Boundary Layer

Meteorology [, 199.

Deardorf, J. W. (1975) Three-dimensional numerical study of

the height and mean structur of a heated planetary boundary

layer. Boundary Layer Meteorology .

Dekeyser, I. and Launder, B. E. (1983) A comparison of

triple-moment temperature-velocity correlations in the

axisymmetric heated jet with alternative closure models.

Proceeding of fourth Turbulent Shear Flows Symposium,

Karlsruhe, Germany.

Dibble, R.W. , Schefer, R.W. , Farshchi, M. and Kollman

(1985) Second-order closure for turbulent nonpremixed

flames. Western States Section of Combustion Institute

WSS/CI - 85- 24.

Donaldson, C. du P. (1969) A computer study of boundary

layer transition. AIAA J. 7 , 271.

Dwyer, H. A. and Sanders, B. R. (1977) Modeling of unsteady

combustion phenomena. AIAA - 77-136.

227



Eaton, J. K. and Johnston, J. P. (1980) An Evaluation of

Data for the Backward-Facing Step Flows. Report for the

1980/1981 conferences on complex turbulent flows, Dept. of

Mechanical Engineering, Stanford University.

Favre, A. (1969) Statistical equations of turbulent gases.

Problems of Hydrodynamics and Continuum Mechanics, SIAM,

231-266.

Gibson, M. M. and Launder, B. E. (1976) On the calculation

of horizantal, turbulent free shear flow under gravitational

influence. J. Heat Transfer, Trans. ASME 93C , 81-87.

Griffin, M.D. , Diwaker, R. , Anderson, J.D. Jr. , and

Jones, E. (1978) Computational fluid dynamics applied to

flows in an internal combustion engine. AIAA - 78 - 57.

Habib, M. A. and Whitelaw, J. H. (1979) Velocity

characteristics of a confined coaxial jets. J. of Fluid

Enqineerinq 10__!1, 521-529.

Hackman, L. P. , Raithby, G. D. ,and Strong, A. B. (1984)

Numerical predictions of flows over backward facing steps.

Int. J. for Num. meth. in Fluids 4 , 711-724.

Han, T. Y. , Humphrey, J. A. C. ,and Launder, B. E. (1981) A

comparison of hybrid and quadratic-upstream differencing in

high Reynolds number elliptic flows. Computer Methods in

Applied Mechanics and Enqineering 29 ,81-95.

Hanjalic, K. and Launder, B. E. (1972) Asymmetric flow in a

plane channel. J. Fluid Mechanics 5_!1 ,301.

Hanjalic, K. , Launder, B. E. and Schiestel, R. (1979)

Turbulence transport modelling of separating and reattaching

shear flows. 2nd Symposium on Turbulent Shear Flows, London.

Hassid, S. and Poreh, M. (1978) A turbulent energy

dissipation model for flows with drag reduction. J. Fluid

En__D_L_q. i00 , 107-112.

Herring, J. R. (1979) Subgrid scale modeling-An introduction

and overview. Turbulent Shear Flows I (Edited by Dorst, F. ,

Launder, B.E. , Schmidt, F.W. , Whitelaw, J.H.). Springer-
Verlag, Berlin.

Hoffmann, G. H. (1975) Improved form of the low-Reynolds-

number k-_ turbulence model. Physics of Fluids 18, 309-312.

228



Irwin, H. P. A. H. (1973) Measurements of a self-preserving
plane wall jet in a positive pressure gradient. J. Fluid
Mechanics 6133.

Jones, W. P. (1977) Workshop on pdf methods for turbulent

flows. Technische Hochschule, Aachen.

Jones, W. P. (1980) Models for turbulent flows with variable

density and combustion, in Prediction Method for Turbulent

Flows (Edited by Kollmann, W.), pp. 379-422. Hemisphere

Publishing Corp., London.

Jones, W. P. and Launder, B. E. (1972) The prediction of

laminarization with a two-equation model of turbulence. INT.

J. Heat Mass Transfer i_55 ,301-314.

Jones, W. P. and Whitelaw, J. H. (1982) Calculation methods

for reacting turbulent flows: A Review. Combustion and Flame

4__88,1-26.

Johnson, B.V. and Bennett (1981) Mass and Momentum Turbulent

Transport Experiments with Confined Coaxial Jets. NASA

Contractor Report NASA CR-165574.

Kim, J. (1985) Investigation of turbulence structure with a

passive scalar. APS. 38th Annual Metting of The Division of

Fluid Dynamics in Tucson, AZ.; Nov. 24-27

Kolmogorov, A. N. (1941) The local structure of turbulence

in incompressible viscous fluid for very large Reynolds

numbers. C.R. Aka. Nank. SSSR 30 , 301-305.

Kwak D. , Reynolds, W.C. and Ferzinger, J.H. (1975) Three-

Dimensiona Time-Dependent Calculation of Turbulent Flow.

Stanford University, Dept. Mech. Eng. Rept. TF-5.

Lam, C.K.G. and Bremhorst, K.A. (1981) Modified form of the

k-E model for predicting wall turbulence. J. Fluids Enqng.
103, 456-460.

Launder, B. E. (1973) Turbulent Models and their

Experimental Verification: ii Scalar Property Transport by

Turbulence. Imperial college, Mech Eng Dept. Rep. HTS/73/26.

Launder, B. E. (1975) On the effect of gravitational field

on the turbulent transport of heat and momentum. J. Fluid

Mech. 6/7 , 569-581.

Launder, B. E. (1976) Heat and mass transport, in Topics in

ADDlied Physics: Turbulence (Edited by Bradshaw, P.) PP.

231-287. Springer-Verlag, New York.

229



Launder, B. E. (1979) Stress transport closures-into the
third generation. Turbulent Shear Flows I (Edited by Dorst,

F., Launder, B.E. , Schmidt, F.W. , Whitlaw, J. H.).

Springer-Verlag, Berlin.

Launder, B.E. , Morse, A.P. , Rodi, W. and Spalding, D.B.

(1973) The prediction of free-shear flows - a comparison of

the performance of six turbulence models, Proc. NASA Langley

Free Turbulent Shear Flows Conf. l, NASA SP 320.

Launder, B. E. and Sharma, B. I. (1974) Application of the

energy dissipation model of turbulence to the calculation of

flow near a spinning disc. Letters in Heat and Mass transfer

l, 131-138.

Launder, B. E. , Reece, G. J. ,and Rodi, W. (1975) Progress

in the development of a Reynolds-stress turbulence closure.

J. Fluid Mech. 68 , 537-577.

Lavoie, G.A. , Heywood, J.B. ,and Keck, J.C. (1970)

Experimental and theoritical study of nitric oxide formation

in internal combustion engines. Combustion Sci. and Technol.

l, 313-326.

Leonard, B. P. (1979) A Stable and accurate convection

modeling procedure based on quadratic upstream

interpolation. Computer Methods in Applied Mechanics and

Engineering 19 ,59-98.

Leschziner, M.A. (1980) Practical evaluation of three

finite-difference schemes for the computation of unsteady-

state recirculating flows. Comput. Meths. Appl. Mech. Eng.

23 , 293-312.

Lewis, M.H. and Smoot, L.D. (1981) Turbulent gaseous

combustion part I: local species concentration measurements.

Combustion and Flame 4_/2, 183-196.

Libby, P. A. and Bray, K. N. C. (1980a) Counter gradient

diffusion in premixed turbulent flames. AIAA - 80 -0013.

Libby, P. A. and Bray, K. N. C. (1980b) Implications of the

laminar flamelet model in premixed turbulent combustion.

Combustion and Flame 39, p.33.

Libby, P. A. and Williams, F. A. (1980) Turbulent Reacting

Flows. Springer-Verlag, New York.

230



Lockwood, F. C. and Naguib, A. S. (1975) The prediction of

the fluctuations in the properties of free, round-jet,

turbulent, diffusion flames. Combust. and Flame 24, 109-124.

Love, M. D. and Leslie, D. C. (1979) Studies of subgrid

modeling with classical closures and Burger's equation.

Turbulent Shear Flows I (Edited by Dorst, F. , Launder, B.E.

, Schmidt, F. W. , and Whitlaw, J. H.). Springer-Verlag, New
York.

Lumley, J.L. (1970) Stochastic Tools In Turbulence. Academic
Press.

Lumley, J.L. (1975a) Prediction Methods for Turbulent Flows.

Lecture Series No. 26, Yon Karman Inst., Belgium.

Lumley, J. L. (1975b) Pressure-strain correlations. Physics
Fluids 18 , 750.

Lumley, J. L. and Khajeh-Nouri (1974) Computational

modelling of turbulent transport. Advances in Geophysics
18A, 169.

Lumley, J. L. (1978) Computational modelling of turbulent

flows, in Advances in Applied Mechanics 18, Acad. Press Inc.

Mansour, N. N. , Kim, J. ,and Moin, p. (1983) Computation of

turbulent flows over a backward facing step. Proceedinq of

4th Turbulent Shear Flows Symposium, Karlsruhe, Germany.

McDannel, M.D. , Peterson, P.R. , and Samuelsen, G.S. (1982)
Species concentration and temperature measurements in a lean

, premixed flow stabilized by a reverse jet. Combustion

Science and Technology 28 ,211-224.

McGuirk, J.J., Taylor, A.M.K.P., and Whitelaw, J.H. (1985)

The assessment of numerical diffusion in upwind difference

calculations of turbulent recirculating flows. Turbulent

Shear Flows III (Edited by Dorst, F. , Launder, B.E. ,

Schmidt, F. W. , and Whitlaw, J. H.). Springer-Verlag, New
York.

Mellor, G. L. and Herring, H. J. (1973) A survey of the

mean turbulent field closure models. AIAA J. Ii , 590-599.

Mellor, G. L. and Yamada, T. (1974) A hierarchy of

turbulence closure models for planetary boundary layers. J__.

Atmos. Sci 3_!1 1971-1806.

231



Mellor, G. L. and Yamada, T. (1982) Development of a

turbulence closure model for geophysical problems. Reviews

of Geophysics and Space Physics 2_O0, 851-875.

Meroney, R.N. (1976) An algebraic stress model for

stratified turbulent shear flows. Computer and Fluids 4, 93-

107.

Monin, A. S. (1965) On the symmetry properties of turbulence

in the surface layer of air. Izvestiya Atmos. Oceanic Phys.

! ,45-54.

Naot, D. , Shavit, A. ,and Wolfstein, M. (1973) Two-point

correlation model and the redistribution of the Reynolds

stresses. Phys. Fluids 16 , 738-743.

Nee, V.W. and Kovasznay, L.S.G. (1969) Calculation of the

incompressible turbulent layer by a simple theory. Phvs.

Fluids i_22, p.473.

Nikjooy, M. , So, R.M.C. and Hwang, B.C. (1985) A comparison

of three algebraic stress closures for combustor flow

calculations. ASME - 85-WA/FE - 3.

Otey, G. R. (1978) Numerical Methods for Solvinq Reaction-

Diffusion Problems. Ph.D. thesis, Univerisity of California,

Davis.

Patankar, S.V. (1980) Numerical Heat Transfer and Fluid
Flow. McGraw Hill.

Patankar, S. V. and Spalding, D. B. (1972) A calculation

procedure for heat, mass and momentum transfer in three-

dimensional parabolic flows. Int. J. Heat Mass Transfer i_55

,1787-1806.

Patel, V.C. , Rodi, W. and Scheuerer (1985) Turbulence

models for near-wall and low Reynolds number flows: A

Review. AIAA J. 2_/3, 1308-1319.

Pope, S. B. (1976) The probability approach to the modelling

of turbulent reacting flows. Combustion and Flame 2_/7,p. 299.

Pope, S. B. (1977) The Implications of the probability

equations for turbulent combusting flows. Combustion and

Flame 2_99,p. 235.

Pope, S. B. (1981) A Monte Carlo method for the pdf

equations of turbulent reactive flow. Combustion Science and

Technoloqy 25, p.159.

232



Prandtl, L. (1925) Bericht uber untersuchungen

ausgebildeten turbulenz. ZAMM 5, p.136.

zur

Prandtl, L. (1945) Uber ein neues formelsystem fur die

ausgebildete turbulenz. Nachrichten von der Akad der

Wissenschaft in Gottingen.

Pratt, D. T. (1976) Calculation of Chemically Reacting Flows

With Complex Chemistry. in Studies in Convection (Edited by

Launder B. E.), 2 Pergamon Press, Oxford.

Pratt, D. T. (1979) Gas-phase chemical kinetics. Pulverized

Coal Combustion and Gasification (Edited by Smoot, L. D. and

Pratt, D. T.), Plenum, New York.

Reynolds W. C. (1976) Computation of turbulent flows. Annual

Review Fluid Mech. 8 , 183-207.

Rhode, R.P. (1975) in Turbulent Mixing in Nonreactive and

Reactive Flows (Edited by Murthy, S.N.B.). Plenum, New York.

Ribeiro, M. M. (1976) The Turbulent Structure of Free Jet

Flows with and without swirl. University of London.

Roback, R. and Johnson, B.V. (1983) Mass and Momentum

Turbulent Transport Experiments with Confined Swirling

Coaxial Jets. NASA Contractor Report 168252.

Rodi, W. (1976) A new algebraic relation for calculating the

Reynolds stresses. ZAMM 56 ,219-221

Rotta, J. C. (1951) Statistische theorie nichthomogener

turbulenz. Zeit. fur Physik 129 , 547-572; 13__!1, 51-77.

Rotta, J. C.

Stuttgart.

(1972) Turbulente Stromungen ,B.G. Teubner,

Samuelsen, G. S. (1986) Private communication

Schumann, U. (1975) Subgrid scale model for finite

difference simulations of turbulent flows in plane channels

and annuli. J. Comp. Phys. 18, 376-404.

Sindir, M.M. (1983a) Effects of expansion ratio on the

calculation of parallel-walled backward-facing step flows:

Comparison of four models of turbulence. ASME - 83-FE-10.

Sindir, M.M. (1983b) Calculation of deflected-walled

backward-facing steps flows: Effects of angle of deflection

on the performance of four models of turbulence. ASME-FE-16.

233



Smith, P.J. and Smoot, L.D. (1981) Turbulent
combustion part II: theory and evaluation for
properties. Combust. Flame 42, p. 277.

gaseous
local

Smoot, L. D. and Hill, S. C. (1983) Critical requirements in

combustion research. Progr. Enerqy Combust. Sci. 9 ,p. 77.

So, R. M. C. (1986) Inlet centerline turbulence effects on

reattachment length in axisymmetric sudden-expansion flows.

Exp. in Fluid 5.

So, R. M. C. and Hwang, B. C. (1986) On incompressible,

turbulent, heated round jets in a co-flowing stream.

Submitted for publication.

So, R. M. C. and Yoo, G. J. (1986) On The Modellinq of Low-

Reynolds-Number Turbulence.NASA CR-3994.

Spalding, D. B. (1971) Concentration fluctuations in a round

turbulent free jet. Chem. Eng. Sci. 26 , 95-107.

Spalding, D. B. (1975) Turbulence modelling: solved and

unsolved problems. Turbulent Mixing in Nonreactive and

Reactive Flows (Edited by Murthy, S. N. B.). Plenum, New
York.

Spalding, D. B. (1977) The eddy break up model applied to

confined turbulent steady flames. AIAA - 77 - 98.

Stevenson, W.H. , Thompson, H.D. , Gould, R.D. (1983) Laser

Velocimeter Measurements and Analysis in Turbulent Flows
with Combustion. AFWAL-TR-82-2076

Sturgess, G.L. , Syed, S.A. and McManus, K.R. (1983)

Importance of inlet boundary conditions for numerical
simulation of combustor flows. AIAA - 83 - 1263.

Taylor, A.M.K.P. and Whitelaw, J.H. (1984) Velocity

characteristics in the turbulent wakes of confined

axisymmetric bluff bodies. J. Fluid Mech. 139 , 391-416.

Tennekes, H. and Lumley, J. L.

Turbulence. MIT press.

(1972) A First Course in

Westbrook, C. K. and Dryer, F. C. (1981) Simplified reaction

mechanisms for the oxidation of hydrocarbon fuels in flames.

Comb. Sci. Tech. 2_/7 , p.31.

234



APPENDIX A

TURBULENT FLOW EOUATIONS FOR THE k-_ MODEL

The

sections reduce

following

CONTINUITYEQUATION :

transport equations presented in the

in axisymmetric coordinates (x,r)

previous

to the

I[0 0 _]r b-_ (r_U) + _-(rpV) o (AI)

X - MOMENTUHEQUATION :

[ ]a - l a a r_VU) +_F(pu) +- =_r _-_-(r_UU)+ _F( ax

r _xx(2r#T _) + _[r/_T(_ + _) 3 c_x (_k)

(A2)

Y- MOMENTUM :

[a_._ a rpVV)] = (gP_(a pV ) + _Ir ( rpUV ) + _--_-( (3r

-r r_T(_-'x + _rr )] + _-r-(2r_T _-r)

V - W 2
-- +

2/_T r 2d" P r

(A3)
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@ - MOMENTUM :

o- _[_ or_V_];-_-__-(pW) + -r (rpUW) + _-_( r 2 P r

k - TRANSPORTEQUATION:

(A4)

a - I [a o ] - _ +_-T(pk) +-r _(r_Uk) + _(r_Vk) : pP_

1 r(#a--_, + _u)_--_-]+ _-_[r(_t + _)_r]
r L k Ok

(AS)

- TRANSPORTEQUATION:

2

[ ]- _ •O - 1 O - 8 rpV_) Pk t2 p_-_-(p_) +- _ _7( pCclr _-_(rpU ) + = -C +

- r _ )_-_] +
t t

(AS)

TURBULENCEMODEL :

_ k 2

_ut= C p -
(AT)

3

ak = _ C_/Cs
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2
O = K

c (c c2 - Ccl)4C_

(A9)
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where

_T = _t+_

= [ 8V 2 V 2] _)U aV 2 aW 2 _ 1
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APPENDIX B

TURBULENT FLOW EOUAT1ONS FOR THE ASM MODEL

The governing equations under the gradient diffusion

assumption in the cylindrical coordinate system are reduced

to the following

CONTINUITYEQUATION :

aT _ _(r_U) + _(rpV) : 0 (BI)

X-MOMENTUMEQUATION :

o o ] I[o ou.o.ou]_-( r _-_(rpUU) + _-{(rpUV) - r _-x-(r_le _-x)+_'{r(r_4e _-{) =

aP S u
- aT + (B2)

where

r _'x'(r_le _'_'x ) _-r"r(r#4e _-x ) - _'_'x(3 pk) -_-x'(3_ll _x )
m

Y-MOMENTUMEQUATION:

_-(pV )+ _-{r (r#vv) 1 [a av a av]r _-x( r_4e _-x) + _--{r( r_2e O-F ) =

OP
+ S v

ar

where
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svi_ o_ o ov]1-2 v= r (r#4e _-r) + _-r(r#2e _-rr) + _pW - 2#3 e r2

la 2 au__, 2 .__ au__
r c_r(3r#22 ax ) + 3 r ax

m m

@-MOMENTUM EQUATION :

o_w_+1[oor_VW_]i[o ow_,o ,_w]_-t( r _(rpUW)+ _-_( - r _(r#6e a_ _(r#Use _-r) =

I

a Wr i a - -P VW (B4)_5e _-_( ) r c_r(_5e W) r

k-TRANSPORT EQUATION :
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_:-TRANSPORTEQUATION:
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where
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2 OV 1 U Op
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APPENDIX C

ALGEBRAIC-STRESS CLOSURE IN AXISYMMETRIC COORDINATES (x,r)

The Reynolds stresses are obtained by the following

algebraic expression

p 2 • 2 2 2-- a__u)
i j-" 3 B_i3z" - C 1 _(u.u.-1 j 3 _ijk) -a(P.1j.- 36ijPk- 3uiuj ax,r

(Cl)

2 2
-#(Dij- _6ijPk -

_U_, A
uiu. - _kS .- - u i:)j _x,,, ) ij k iuj (Pk-

=0.

Constants A and B are equal to 1 for Rodi's model. Mellor

and ¥amada's model is obtained by assigining A=O and B=Pk/z

and for the equilibrium model A=O and B=I In the

cylindrical coordinates system, production of the Reynolds

stresses and the mean strain rate are expressed as

aU -- au
Pll=-2(u 2 _ + uv _-.{) (C2)

-- av -- aV -- W
P22 =-2(uv _ + v2 --c%r - vw r ) (C3)

P33=_2(u _ aW -- aW -- V_-_ + vw _-{ + w 2 r ) (C4)

aV +_-_ av -- W -- aU -- au
PI2=-(u-2- _-_- _-_- uw -r + uv _-_ + v 2 _r ) (C5)

---aw _w r +vjv --_v --_v wP23=- (uv_ - + +uw_-_ +vw_-{ -w 2 ) (C6)r r

aw -- aw v au _u
Pl3=-(u 2 _-_ + uv _-_ + u-w r + _-Q _-x + _-_ _) (c7)
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APPENDIX D

ALGEBRAIC FLUX MODEL IN AXISYMMETRIC COORDIANRES (x,r)

The turbulent fluxes are obtained by the following

algebraic expressions

£
-C u--_ __2ae -- 0o -- aU -- 0U ue

_ -uv _-{ +(C28-i)(u0 _ + ve _-_-r) - A_-_(Pk-£)=0

(DI)

£ --

-Cle _ ve -
-- ae v-2 _e
uv a--;- _-_ + -- ev -- ov 2w--_w)(c2e-1)(ue _-_ + ve _--{ -

+w-'S" w + A ve
_-_(Pk-£)=O (D2)

-C
£ -- -- ae -- _e -- _W -- _W -- V -- W

le k we -uw _ -vw _ +(C2e-l)(ue _-_- + ve _-_ + we - +v8r _)

w6
+A _-_(Pk- z ) =0 (D3)

Constant A is equal to 0 for Mellor and Yammada's model; and

is equal to 1 for Launder and Gibson'model.
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_x v2 _-{ ) + r _r rCsP z

-- Our
A+l)(uv o---X---

- _vw _--uw) + A(u-T OvZo'--x+ uv _-{ - 2uw --_ ) - -r PCs

oV&(A+I) u['J'&_ +

au +_-au ) _ci _ [(uv
+p uw W_r-P(u2 aVo___+u-_ aVo.__--uwWr +uv _ O--_

8V -- W -- OU v--f OU )
_ = _(_ u--F OVo___x- uv _-_ + uw -r - uv ---Ox --Or

248



8U
8W -- aV -v-ww aw OV aU

k(aU aV 2_
-P ¢ 2'_-F + _-_) - (R-r)2

Equation for v--w :

(E5)

1 [ c_(r;U_ww) O(r_V_ww) ] 1 [ a -k--_-,c%_-Qr + -- + -Or r _ CsP , u')-_-x--] +

- k V_) av--J
a--{aJr(# + (A+I) CsP _ a--{- ]j - Ox Cs _ 0-7-- +

m

v2-w2 -- au-'ff au-'ff -- u--v -- auv -- auv
uw + A(uv _ + v 2 -- + vw _ + uw + vw

r Or r _ Or

2_- + 1 - k _-_ a -- --
r ax r CsP _ __{(v2 _ w2)_4w- _- v w + --ar uW_-xx(v2 -w2 )

+2A[-_ww 8w2 -- Ow2 -- 2vw avw avwvw 0-7- w2 -- +h-T _ +_- -- +r ax 8r

249



- tp k 0 W - -- -- 2_vw_. r b-7(7) -p(v2 - w2)Wr (R-r)2

m

Equation for uw :

(E6)

r [ OxO(rpUu--ww) ] [ kT_-, Ouw
o(rpVuw) _ _i o [r(_ + (A+I)c ; ;_ ;o-_-]+ Or r 0-_

-]a [r(_ + - k _ Ouw -- auw -- uv)o×oc ? -k[(A+1)(uv,or +uw--r +

-- ]] [ -- -_oV-w --oVwA""--Ou2tuw_-_ +_-Q _au-a-,) +ir _-{0rC sp- _kr---au-w_ _uv_-_ +v-w_-_ +A( u- _--_--+uv _---_-+

--V2 --W2
uw--

r +uwa-V- vwa--7-
+_l -k --Our --Ouv
r CsP_ uw_-_ + VWOr _-_-uwr

---_W ----_U ----_V. - ---W
#p(uv--uv_F - vw_F +uwFF) (I-=)- +r

_V _w_-_W _ _V
uw_ ax vw_ )

1 - OW • - -- W 2_u--Q
--tpk_-_- c _ uw -2 1 k p uv r (R-r) 2

250



APPENDIX F

THE SCALAR FLUX TRANSPORT CLOSURE

Equation for u8 :

[ a(rpUuS) + a(rpVuS)

r L _x Or
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APPENDIX G

BOUNDARY CONDITIONS FOR HIGH REYNOLDS-NUMBER MODELS

Differential transport equations for various turbulence

quantities were introduced in chapter two. There exist an

infinite number fields that satisfy the same set of

equations, and only the boundary conditions distinguish one

type of flow from another. Thus consideration of boundary

conditions is very important. Most turbulence models are

devised for high Reynolds number flows. However, in the

vicinity of the solid boundaries the low Reynolds number

effects become significant and must be accounted for. This

can be performed either by solving the low Reynolds number

version of the transport equations or by developing wall

functions that introduce these effects into the existing

high Reynolds number models. The first option predicts the

near wall region better but it needs vast amount of computer

time. In the high Reynolds models, it is assumed that the

distribution of mean velocity and turbulence quantities

throughout the main part of the flow is weakly dependent on

the model of the turbulent transport in the immediate wall

vicinity and the conventional logarithmic law which is based

on the local equilibrium is applied. Details of this sort of
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bounadary condition for high Reynolds number models are

given in the following sub-sections.

G.I NEAR-WALLVELOCITY PROFILE

In general, near the wall, one dimensional couette flow

analysis is made. In this region shear stress is assumed to

be constant. This condition is true only for an impermeable

wall, with negligible streamwise pressure gradient. The wall

region is made up of three zones: The viscous sublayer,

transition or buffer zone, and inertial sublayer. Our

approach is to dispose of the buffer layer by defining a

point y+=ii.63 below which the flow is assumed to be purely

viscous and above which it is purely turbulent. The law of

the wall may be expressed as

+ + +
y ii. 63 u = y

+
y > 11.63 u = - _n,_

(GI)

where

+ + u 2y = ; u =-- ; u = _--_
u u T p

T

= Van Karman conastant = .4187
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E = Roughness Parameter = 9.973

G.2 NEAR-WALL TURBULENCE KINETIC ENERGYY BUDGET AND

DISSIPATION RATE

The near-wall kinetic energy levels are obtained from

the solution of the k transport equation. The convection and

diffusion terms are treated by hybrid differencing while the

production and dissipation terms need to be changed to

include the near wall effects. The approach is based on one

dimensional, constant shear stress couette layer. In the

inertial sublayer and in the absence of buoyancy effects,

the local rate of production of turbulence is balanced by

the viscous dissipation rate _ which, together with eddy

viscosity and the fact that the shear stress is

approximately equall to the wall shear stress rw ,leads to

2

k = _ (S2)

From equation (G2) the surface shear stress may be found as

- .25
p _ _/kU C

= # (G3)
1"s en(E* _)
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The mean production rate of k per unit volume can then be

found as

MEANPRODUCTIONRATE = Ts Up/yp (G4)

where yp being the distance of the near wall grid point from

the the wall and Up is the velocity at that point.

In wall-flows, unlike turbulent kinetic energy which

falls to zero at the wall , E reaches its highest value at

the wall. With local equilibrium assumption

2 au
E = U

_- ay

and au/oy from (G3), there results the following boundary

condition for _:

3

u r
E --

_y

(G5)

G.3 NEAR-WALL SCALAR PROFILE

For an impermeable wall with zero streamwise pressure

gradient, the scalar flux at pont P near the wall can be

written as

Op _/(Tsp) (G6)
Js,s = - _+
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where

e+ = %,t (u++ PF) (G7)

The quantity PF in Eq.

Function:

(G7) is a following Van Driest

-.5 -.25

PF = (.25_/Sin(_/4)) (_/26) (-i + _/_t)(_/at) (G8)

where _ and _t are the the molecular and turbulent prndtl

number for scalar

G.4 SYMMETRY CONDITIONS

At symmetry plane, the normal gradients are zero for

all quantities with symmetrical behavior such as scalar

quantities and velocity components parallel to the symmetry

plane or line

G.5 INLET CONDITIONS

For flows without swirl, the radial component of

velocity is set to zero and axial velocity can be specified

either by a fully developed pipe flow condition or by

information from expeimental data. In swirl flows, howevere,

an accurate specificatiQn of velocities is required for a

better comaprison with measurement. The turbulent kinetic

energy profile either is calculated by the mixing length
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hypothesis or is determined from the experimental data. The

inlet dissipation rate is calculated from the following

expression

1.5
k
l

where I is the turbulent length scale.
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